Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Решение дифференциального уравнения методом Рунге-Кутта




С помощью подстановки у' = z, у'' = z' заменим исходное дифференциальное уравнение системой уравнений:

(**)

с начальными условиями у(0) = 1, z(0) = 1. Таким образом,

 

f1(x, y, z)= z,

f2(x, y, z)= 3z –2y + x .

 

Шагом интегрирования h = 0,1 разобьем отрезок [0;0,3] на три равных части точками х0= 0, х1= 0,1, х2 = 0,2, х3 = 0,3. Для вычисления приближенных значений у1, у2, у3 и z1, z2, z3 решения системы (**) воспользуемся формулами (10.17). Результаты вычислений помещены в табл.11. Заполнение таблицы ведется в следующем порядке.

При i = 0:

 

1. Записываем в первой строке х0 = 0, у0 = 1, z0 = 1.

2. Вычисляем f1(x0, y0, z0)= z0 = 1, f2(x0, y0, z0) = 3z0 –2y0 + x0 = 1,

тогда К1(0) = 0,1∙1 = 0,1; l1(0) = 0,1∙1 = 0,1.

3. Записываем во второй строке

, , .

4. Вычисляем

 

тогда .

5. Записываем в третьей строке

, , .

 

6. Вычисляем

,

тогда .

7. Записываем в четвертой строке

, ,

8. Вычисляем

 

тогда .

9. В столбцы и записываем числа K1(0), 2K2(0), 2K3(0), K4(0) и соответственно.

10. Вычислим

11. Получаем

Значения заносим в строку, помеченную индексом i = 1, и снова проводим вычисления по формулам (10.17). В результате этих вычислений получаем следующую таблицу приближенных значений решения системы (**).

 

Таблица 11

i x y z K l Δy Δz
1,000000 1,000000 0,100000 0,100000 0,100000 0,100000
  0,05 1,050000 1,050000 0,105000 0,110000 0,210000 0,220000
0,05 1,052750 1,055000 0,105500 0,111000 0,211000 0,222000
0,1 1,105500 1,111000 0,111100 0,122200 0,111100 0,122200
  0,105349 0,110681
0,1 1,105349 1,110681 0,111069 0,122134 0,111068 0,122134
  0,15 1,160883 1,171748 0,1171748 0,134348 0,234349 0,268696
0,15 1,163936 1,1778546 0,117785 0,135557 0,235570 0,471140
0,2 1,223134 1,246250 0,124625 0,149248 0,124625 0,149248
  0,117602 0,1351985
0,2 1,222951 1,245879 0,124588 0,149174 0,124588 0,149174
  0,25 1,285245 1,320466 0,1320466 0,164091 0,264093 0,328182
0,25 1,288974 1,327925 0,1327925 0,1655825 0,265585 0,331165
0,3 1,355743 1,411462 0,411462 0,1822899 0,1411462 0,1822899
  0,1325686 0,165135
0,3 1,3555196 1,4110142        

 

 

i xi yi zi
0,1 1,105349 1,110681
0,2 1,222951 1,245879
0,3 1,3555196 1,4110142

 

 


Поделиться:

Дата добавления: 2015-09-13; просмотров: 113; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2025 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты