КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Тригонометрическая форма записи комплексных чисел.
Это запись комплексного числа в виде
где r – модуль комплексного числа, j - аргумент. Примечание: если комплексное число записано в виде
то это означает, что угол φ отрицательный и данное число надо записать в виде:
Рис.4.1. Геометрическая интерпретация комплексного числа Модуль комплексного числа:
Аргументкомплексного числа (j) - величина угла между положительным направлением действительной оси и вектором, соответствующим комплексному числу.
Аргумент зависит от того, в какой координатной четверти лежит вектор, соответствующий этому комплексному числу:
Пример. Перевести число Решение: a = 3,
Так как
Тогда, тригонометрическая форма записи имеет вид:
Действия над комплексными числами в тригонометрической форме: 1.
2. 3. Пример.Выполнить действия над комплексными числами в тригонометрической форме: А)
Б)
|