Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Неопределенный интеграл. Функция F(х) является первообразной для функции f(х) на заданном промежутке, если для всех значений х из заданого промежутка выполняется условие:




Читайте также:
  1. Аi - весомость каждого фактора в интегральной оценке конкурентоспособности предприятия.
  2. Аналитическая философия. Интегральный подход К.Уилбера. Философия телесности и психосоматическая медицина.
  3. Анықталған интеграл қасиеттері.
  4. Вопрос 5. Не вычисляя интеграл оценить границы его возможного значения, используя теорему об оценке определенного интеграла.
  5. Вычисление двойного интеграла
  6. Вычисление определенного интеграла
  7. Вычисление определенных интегралов
  8. Вычисление площадей фигур с помощью определенного интеграла
  9. Геометрические и физические приложения кратных интегралов
  10. Геометрическое приложение определенного интеграла (площадь криволинейной трапеции).

Функция F(х) является первообразной для функции f(х) на заданном промежутке, если для всех значений х из заданого промежутка выполняется условие:

Если функция F(х) – первообразная для функции f(x), то множество функций F(x) + C , где С – произвольная постоянная, называется неопределенным интегралом от функции f(х) и обозначается

 

 

где f(x) – подынтегральная функция, f(x)dx – подынтегральное выражение, х – переменная интегрирования.

Свойства неопределенного интеграла:

1.

2.

3.

4.

5.


Формулы интегрирования:


1.

2.

3.

4.

5.
6.

7.

8.

9.

10.

11.

12.

13.

14.


Методы интегрирования:

1. Непосредственное интегрирование. То есть интеграл путем тождественных преобразований подынтегральной функции и применения свойств неопределенного интеграла приводится к одному или нескольким табличным интегралам.

2. Если подынтегральная функция является дробью, у которой числитель есть производная от знаменателя, то интеграл равен натуральному логарифму от знаменателя.


 

3. Метод замены переменной. То есть переменная интегрирования заменяется новой переменной в результате чего интеграл переходит в другой интеграл, более простой, чем начальный.

Пример.Вычислить неопределенный интеграл

А) Метод непосредственного интегрирования (используя формулы интегрирования):

1) .

2) .

3) .

4)

.

Б) Если числитель подынтегральной функции f(x) равен производной знаменателя:

5

.

В) Метод замены переменной (метод подстановки):

6)

7)


Дата добавления: 2015-02-09; просмотров: 11; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты