КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Порядок выполнения работы. 1. Выбрать вариант задания из таблицы 8.⇐ ПредыдущаяСтр 13 из 13 1. Выбрать вариант задания из таблицы 8. 2. В соответствии с вариантом составить и отладить моделирующую программу. 3. Провести моделирование для тестового примера. Отладить программу на тестовом примере. Подобрать объем моделирования Mтак, чтобы относительная погрешность экспериментальных данных для тестового примера не превосходила 10%. 4. Провести моделирование для получения требуемых экспериментальных зависимостей при . Полученные данные занести в таблицу 7. Таблица 7 – Зависимость среднего времени пребывания запроса в системе и производительности системы от интенсивности входного потока
Варианты заданий Таблица 8 – Варианты заданий к лабораторной работе №5
Для равномерного закона распределения вероятностей границы интервала значений случайной величины выбрать так, чтобы длина интервала равнялась .
Содержание отчета 1. Цель работы. 2. Формулы и графики законов распределения вероятностей интервалов между заявками и времени обслуживания заявок. 3. Описание разработанной программы: список использованных переменных, список использованных функций, блок-схема, листинг. 4. Теоретический и экспериментальный графики зависимостей производительности СМО и среднего времени задержки запроса от интенсивности входного потока для тестового примера. 5. Экспериментальные графики зависимостей производительности СМО и среднего времени задержки запроса в СМО от интенсивности входного потока для своего варианта. 6. Выводы.
Вопросы для самопроверки 1. Назовите основные элементы СМО и их характеристики. 2. Как оценивается КПД для системы массового обслуживания? 3. Как связаны средняя длина очереди и среднее время пребывания заявки в очереди? 4. Как связаны средняя длина очереди и среднее число заявок в СМО? 5. Как связаны среднее время пребывания заявок в СМО и среднее число заявок в СМО? 6. Приведите верхнюю оценку для среднего времени пребывания заявки в системе, когда входной поток заявок – пуассоновский а поток обслуживания – рекуррентный.
8. Список рекомендованной литературы 1. Вентцель Е. С. Теория вероятности. М.: Наука. 1969 г. 2. Строгалев В. П., Толкачева И. О., Имитационное моделирование. М.: Издательство МГТУ им. Баумана, 2008 г. 3. Плакс Б. И. Имитационное моделирование систем массового обслуживания. СПб.: Издательство СПбГААП, 1995.
|