Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



ПРИМЕР РЕШЕНИЯ СИСТЕМЫ ВСЕМИ ТРЕМЯ МЕТОДАМИ




Читайте также:
  1. C2 Покажите на трех примерах наличие многопартийной политической системы в современной России.
  2. C2 Раскройте на трех примерах научный вывод о том, что социальные условия влияют на характер и форму удовлетворения первичных (биологических, витальных) потребностей.
  3. Gt; во-вторых, когнитивной оценкой (cognitive appraisal), которую человек дает событию, требующему разрешения.
  4. II. Примеры проективных методик
  5. II. Системы, развитие которых можно представить с помощью Универсальной Схемы Эволюции
  6. III. Примеры решения задач.
  7. III. Примеры решения задач.
  8. III. Примеры решения задач.
  9. III. Требования к организации системы обращения с медицинскими отходами
  10. IV. Примеры решения задач.

Решить систему линейных алгебраических уравнений методами Крамера, Гаусса и матричным методом.

 

 

I. Метод Крамера.

Количество уравнений (3) равно количеству переменных (3), значит, матрица системы квадратная и имеет определитель.

 

Вычислим определитель матрицы системы:

- значит, система уравнений имеет единственное решение, которое находят по формулам Крамера: , .

 

Заменяем 1–й столбец столбцом свободных членов

Заменяем 2-й столбец столбцом свободных членов

Заменяем 3-й столбец столбцом свободных членов

Ответ: .

 

II. Матричный метод.

Данную систему уравнений можно записать в матричной форме :

 

, откуда .

 

Найдем матрицу, обратную матрицу . Так как , такая матрица существует. Найдем алгебраические дополнения к элементам матрицы по формуле :

; ; ;

; ; ;

; ; .

Тогда

.

А теперь найдем решение системы:

.

Ответ: .

 

 

III. Метод Гаусса.

Выполним преобразования:

 

Сделаем коэффициенты при х равными нулю.

Т.к. коэффициенты при z во II и III уравнениях системы равны, то можно из III уравнения вычесть II уравнение.

Таким образом, получили, что II уравнение системы есть уравнение с одной переменной, значит, можно вычислить значение переменной у.

Теперь последовательно, с помощью подстановки, вычисляем значения

переменных z и х.

Ответ: .

 


Дата добавления: 2014-11-13; просмотров: 16; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты