Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


ТЕОРЕМА 2: Какую-либо ненулевую матрицу с помощью элементарных преобразований можно привести к матрице ступенчатого вида.




 

 

Матрица А называется ступенчатой, если она имеет вид:

, где

 

Замечания: 1. Условие , т.е., количество строк не больше количества столбцов, всегда может быть достигнуто транспонированием матрицы.

2. Если в ступенчатой матрице количество строк равно количеству столбцов, то такую матрицу называют треугольной.

 

Очевидно, что ранг ступенчатой матрицы равен , т.к. имеется минор -го порядка, не равный нулю:

.

Таким образом, с помощью элементарных преобразований матрицу можно привести к так называемому ступенчатому виду, когда вычисление ее ранга несложно, т.к., для этого достаточно посчитать количество строк матрицы ступенчатого вида.

Пример: Вычислить ранг матрицы с помощью элементарных преобразований (выбранные строки или столбцы нумеруем с помощью римских цифр, выполняемые преобразования записываем напротив выбранных строк или столбцов)

Решение: Выполняем элементарные преобразования

 



Поделиться:

Дата добавления: 2014-11-13; просмотров: 210; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты