![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
УПРАЖНЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ1) Правило нахождения определителей второго порядка можно записать в виде формулы:
Вычислить определители 2-го порядка матриц:
а)
2) Для вычисления определителей третьего порядка используют правило Сарруса или правило треугольников, которое проще запоминается в виде следующих схем:
Вычислить определители 3-го порядка матриц по правилу Сарруса:
а)
3) Для вычисления определителей 4-го и более высокого порядка используют правило вычисления определителя методом разложения по элементам строки или столбца (по теореме Лапласа): определитель равен сумме произведений всех элементов какого-либо столбца (или строки) на соответствующие им алгебраические дополнения. Обычно вычисление проводится по элементам 1-й строки. Можно использовать теорему Лапласа и для вычисления определителей 3-го порядка, когда разложение по первой строке имеет вид: Вычислить определители 4-го и 3-го порядков:
а)
г)
Замечание: Для сокращения вычислений удобно определитель раскладывать по элементам той строки или столбца, где содержится наибольшее количество нулей. В этом случае нужно находить алгебраическое дополнения к элементам, равным 0; если же строки или столбцы не содержат достаточного количества нулей, то удобно провести эквивалентные преобразования. Используют правило: если ко всем элементам строки (столбца) прибавить соответствующие элементы другой строки (столбца); умноженные на одно и то же число; то определитель не изменяется. III. «РАНГ МАТРИЦЫ»
Для решения и исследования некоторых математических и прикладных задач большое значение имеет понятие ранга матрицы.
Рассмотрим матрицу А размера
В матрице А размера вычеркиванием каких-либо строк и столбцов можно вычленить квадратные подматрицы k-го порядка, где (меньшего из т и п). Определители таких подматриц называются минорами k-го порядка матрицы А. Один элемент матрицы называют минором первого порядка. Из матрицы А размером Пример: Выделим указанные подматрицы из данной матрицы Решение: Некоторые подматрицы первого порядка А некоторые подматрицы второго порядка А некоторые подматрицы третьего порядка А
|