КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Граничний перехід у нерівностях
Теорема . Якщо елементи збіжної послідовності , починаючи з деякого номера , задовольняють нерівність , то і границя цієї послідовності задовольняє нерівність . Доведення. Нехай, починаючи з деякого номера , елементи збіжної послідовності задовольняють нерівність і . Припустимо, що . Оскільки , то для існує номер такий, що для виконується нерівність , яка рівносильна нерівності . Тоді із нерівності одержуємо: , що суперечить умові. Отже, . Випадок доводиться аналогічно. Наслідок 1. Якщо елементи збіжних послідовностей і , починаючи з деякого номера , задовольняють нерівність , то . Нехай, починаючи з деякого номера, виконується нерівність . Тоді для таких . Отже, , а тому . Звідси маємо . Другий випадок установлюється аналогічно. Теорема. Нехай члени послідовностей , , , починаючи з деякого номера, задовольняють нерівність і . Тоді послідовність збіжна й . Доведення. Задамо довільне число . Тоді для заданого знайдеться такий номер , що для виконуватиметься нерівність , тобто . Для цього ж знайдеться такий номер , що для , тобто . Виберемо . Тоді виконуватиметься нерівність
для всіх . Ураховуючи умову теореми, маємо або , тобто для всіх . Звідси випливає, що .
|