Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Операції над неперервними функціями




Теорема. Якщо функції неперервні в точці , то функції у точці також неперервні.

Доведення цієї теореми безпосередньо випливає з означення неперервності функції в точці та властивостей границь.

 

Теорема (про неперервність складеної функції). Якщо функція неперервна в точці , а функція неперервна в точці , причому , то складена функція неперервна, як функція від , у точці .

Доведення. Нехай задано довільне число . Тоді за неперервністю функції у точці знайдеться число таке, що для всіх , які задовольняють умову .

Для числа за неперервністю функції у точці знайдеться число таке, що для всіх , які задовольняють умову .

Отже, для довільного числа знайдеться число таке, що з умови випливає нерівність , а це означає, що функція неперервна в точці .

Можна довести, що всі елементарні функції в області їх визначення неперервні.

Звернемо увагу на те, що з означення неперервності функції у точці випливає

.

Наведемо приклади деяких важливих границь, обчислення яких спирається на неперервність елементарних функцій.

1) .

 


Поделиться:

Дата добавления: 2014-12-03; просмотров: 288; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты