Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Предмет теории вероятности.




Читайте также:
  1. Cовременные теории мотивации
  2. Quot;Перемещенный предмет" постмодернизма
  3. V 1: Логика и ее предмет
  4. VII. Описание учебно-методического и материально-технического обеспечения образовательного процесса по предмету «Технология» (направление «Технический труд»).
  5. А. Понятие "принуждение". Предмет социологии
  6. Аксиоматический способ построения теории
  7. Аксиоматическое построение теории вероятностей.
  8. Аналіз системи, що автоматизується у заданій предметній області, напрямків її розвитку, бізнес-процесів, принципів моделювання
  9. Антинорманские теории
  10. АРГУМЕНТЫ В ПОЛЬЗУ БИОГЕННОЙ ТЕОРИИ

Математическая наука, изучающая общие закономерности случайных массовых явлений независимо от их конкретной природы и дающая методы количественной оценки влияния различных случайных факторов на рассматриваемые явления называется теорией вероятностей.

На основе наблюдений и опыта наука приходит к формулировке закономерностей, которым подчиняется течение изучаемых ею явле­ний. Простейшая и наиболее распространенная схема устанавливае­мых закономерностей такова:

Предложение 1. При каждом осуществлении определенного комплекса условий про­исходит событие А.

Так, например, если вода при атмосферном давлении в 760 мм нагревается выше 100° по Цельсию (комплекс условий), то она превращается в пар (событие А). Или другой пример: при любых химических реакциях каких угодно веществ, без обмена с окружаю­щей средой (комплекс условий) общее количество вещества (ма­терии) остается неизменным (событие А). Последнее утверждение носит название закона сохранения материи. Читатель легко может самостоятельно указать примеры других подобных закономерностей, заимствованных из физики, химии, биологии и других наук.

Определение 1.Событие, которое неизбежно происходит при каждой реализации комплекса условий, называется достоверным.

Определение 2.Если событие A заведомо не может произойти при осуществлении комплекса условий, то оно называется невозможным.

Определение 3. Событие А, которое при реали­зации комплекса условий может произойти, а может и не произойти, называется случайным.

Из этих определений ясно, что, говоря о достоверности, невоз­можности, случайности какого-либо события, мы всегда будем иметь в виду его достоверность, невозможность или случайность по отно­шению к какому-либо определенному комплексу условий.

Простое утверждение о случайности события имеет очень огра­ниченный познавательный интерес: оно сводится лишь к указанию на то, что комплекс условий не отражает всей совокупности причин, необходимых и достаточных для появления события А. Такое ука­зание нельзя считать совершенно бессодержательным, так как оно может послужить стимулом к дальнейшему изучению условий появ­ления события А, но само по себе оно еще не дает нам положи­тельного знания.

Имеется, однако, широкий круг явлений, когда при многократ­ном осуществлении комплекса условий доля той части случаев, когда событие А происходит, лишь изредка уклоняется сколько-нибудь значительно от некоторой средней цифры, которая, таким об­разом, может служить характерным показателем массовой операции, (многократного повторения комплекса) по отношению к событию A.



Для указанных явлений возможно не только простое констати­рование случайности события А, но и количественная оценка возмож­ности его появления. Эта оценка выражается предложением вида:

Предложение 2. Вероятность того, что при осуществлении комплекса условий произойдет событие А, равна р.

Закономерности этого второго рода называются вероятностными или стохастическими закономерностями. Вероятностные закономерности играют большую роль в самых различных областях науки.

Несомненно, что понятие математической вероятности заслужи­вает углубленного философского изучения. И основная специфическая философская проблема, выдвигаемая самим существованием теории вероятностей и успешным ее применением к реальным явлениям, со­стоит в следующем: при каких условиях имеет объек­тивный смысл количественная оценка вероятности случайного события А при помощи определенного числа Р(A), называемого математической вероятностью события А, и каков объективный смысл этой оценки. Ясное понимание взаимоотношения между философскими категориями случайного и необходимого является неизбежным предварительным условием успешного анализа понятия математической вероятности, но этот анализ не может быть полным без ответа на поставленный нами вопрос о том, при каких условиях случайность допускает ко­личественную оценку в виде числа вероятности.



Число различных определений математической вероятности, пред­ложенное теми или иными авторами, очень велико. Мы не станем сейчас разбираться во всех логических тонкостях этих многочислен­ных определений. Всякое научное определение такого рода основных понятий, как понятие вероятности, является лишь утонченной логи­ческой обработкой некоторого запаса очень простых наблюдений и оправдавших себя долгим успешным применением практических прие­мов. Интерес к логически безупречному «обоснованию» теории вероят­ностей возник исторически позднее, чем умение определять вероятно­сти различных событий, производить вычисления с этими вероятностями, а также использовать результаты произведенных вычислений в прак­тической деятельности и в научных исследованиях. Поэтому в основе большинства попыток научного определения общего понятия вероят­ности легко рассмотреть те или иные стороны конкретного позна­вательного процесса, приводящего в каждом отдельном случае к фак­тическому определению вероятности того или иного события, будь то вероятность выпадения хотя бы одной шестерки при четырех бросаниях игральной кости, или вероятность радиоактивного распада, или вероятность попадания в цель.



С очерченной сейчас точки зрения большинство определений математической вероятности может быть разделено на три группы:

1. Определения математической вероятности как количественной меры «степени уверенности» познающего субъекта – субъективная вероятность.

2. Определения, сводящие понятие вероятности к понятию «равновозможности» как к более примитивному понятию (так называемое «классическое» определение вероятности).

3. Определения, отправляющиеся от «частоты» появления события в большом количестве испытаний («статистическое» определение).

Указанные группы по отдельности обладают существенными недостатками и полное понимание природы вероятности требует их разумного синтеза.


Дата добавления: 2014-12-23; просмотров: 12; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.016 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты