КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Задания для контрольной работы № 1.1. В урне содержится пять видов шариков с диаметрами и мм с соответствующими долями 0,15; 0,17; 0,21; 0,22; 0,25. Производится повторная выборка двух шариков. Найти все возможные выборочные распределения, построить законы распределения и . Проверить справедливость равенств , . 2. Население города составляет 100000 (b+1) человек. Для определения доли детей дошкольного возраста произведена бесповторная выборка объемом 5000 (а+1) человек. Среди них оказалось 1200 (а+1) детей дошкольного возраста. Определить, с какой доверительной вероятностью можно утверждать, что доля детей дошкольного возраста отличается от найденной относительной частоты не более чем на . 3. Выборочным путем проверено 1000 (b+1) пластмассовых болванок из партии в 5000(b+1) штук. Среди них оказалось (а+3)% нестандартных. Определить границы, в которых заключено число нестандартных болванок во всей партии, если результат необходимо гарантировать с вероятностью . 4. Из 5000(а+1) рабочих предприятия выборочным путем отобрали 200(а+1) человек для обследования их заработной платы (выборка случайная бесповторная). Средняя выборочная заработная плата оказалась равной руб., а дисперсия . Определить: 1) вероятность того, что ошибка выборочной средней не превысит рубля; 2) с вероятностью 0,999 граничные значения генеральной средней. П р и м е ч а н и е. 10a +b – номер, соответствующий студенту в групповом списке.
|