Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



I. Теоретические сведения. 1. Эллиптический параболоид.

Читайте также:
  1. I. Теоретические сведения.
  2. I. Теоретические сведения.
  3. I. Теоретические сведения.
  4. I. Теоретические сведения.
  5. I. Теоретические сведения.
  6. I. Теоретические сведения.
  7. I. Теоретические сведения.
  8. I. Теоретические сведения.
  9. I. Теоретические сведения.

1. Эллиптический параболоид.

Определение. Эллиптическим параболоидом называется множество точек пространства, координаты которых в некоторой системе координат удовлетворяют следующему уравнению

. (1)

Уравнение (1) – каноническое уравнение эллиптического параболоида.

Из уравнения параболоида следует:

1) Все точки эллиптического параболоида лежат выше плоскости xOy;

2) Плоскости симметрии эллиптического параболоида: yOz, xOz;

ось симметрии эллиптического параболоида: Oz;

центра симметрии у эллиптического параболоида нет.

3) Вершина эллиптического параболоида: О(0; 0; 0) – начало координат.

Исследование эллиптического параболоида методом сечений.

1) Сечение плоскостью a, параллельной плоскости .

(2)

Или

. (3)

а) Если , то линия пересечения эллипс;

б) если , то линия пересечения мнимый эллипс;

в) если , то линия пересечения пара мнимых пересекающихся прямых с действительной точкой пересечения.

2) Сечение плоскостью b, параллельной плоскости .

(4)

Или

. (5)

При любом значении h получаем параболу, ось которой параллельна оси Oz, В частности, если , то , и в сечении мы получаем параболу ;

3) Сечение плоскостью g, параллельной плоскости .

(6)

Или

. (7)

При любом значении h получаем параболу, ось которой параллельна оси Oz, ветви направлены вверх. В частности, если , то , и в сечении мы получаем параболу .

2. Гиперболический параболоид.

Определение. Гиперболическим параболоидом называется множество точек пространства, координаты которых в некоторой системе координат удовлетворяют следующему уравнению

. (8)

Уравнение (8) – каноническое уравнение гиперболического параболоида.

Из уравнения параболоида следует:

1) Гиперболический параболоид поверхность неограниченная;

2) Плоскости симметрии гиперболического параболоида: yOz, xOz;

ось симметрии: Oz;

центра симметрии у гиперболического параболоида нет.

3) Вершина: О(0; 0; 0) – начало координат.

Исследование гиперболического параболоида методом сечений.

1) Сечение плоскостью a, параллельной плоскости .

(9)

Или

. (10)

а) Если , то линия пересечения гипербола с действительной осью параллельной оси Ох;

б) если , то линия пересечения гипербола с действительной осью параллельной оси Oy;



в) если , то линия пересечения пара действительных пересекающихся прямых.

2) Сечение плоскостью b, параллельной плоскости .

(11)

Или

. (12)

При любом значении h получаем параболу, ось которой параллельна оси Oz, В частности, если , то , и в сечении мы получаем параболу ;

3) Сечение плоскостью g, параллельной плоскости .

(13)

Или

. (14)

При любом значении h получаем параболу, ось которой параллельна оси Oz, ветви направлены вниз. В частности, если , то , и в сечении мы получаем параболу .

 

3. Прямолинейные образующие поверхностей второго порядка.

Определение. Прямая l называется прямолинейной образующей поверхности второго порядка, если каждая точка этой прямой лежит на поверхности.

Очевидно, что образующие конических и цилиндрических поверхностей являются прямолинейными образующими. Кроме того, прямолинейные образующие имеют однополостный гиперболоид и гиперболический параболоид. У однополостного гиперболоида и гиперболического параболоида существует два семейства прямолинейных образующих, таких что:

1) через каждую точку поверхности проходят по одной прямолинейной образующей из каждого семейства;



2) любые две прямолинейные образующие одного семейства являются скрещивающимися.

Прямолинейные образующие однополостного гиперболоида задаются следующими системами уравнений:

I. II. (15)

где k и l – любые числа.

Прямолинейные образующие гиперболического параболоида задаются следующими системами уравнений:

I. II. (16)


Дата добавления: 2014-12-30; просмотров: 30; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
IV. Примеры решения задач. Задача 1. Написать каноническое уравнение однополостного гиперболоида, если он пересекает плоскость xOy по эллипсу | IV. Примеры решения задач. Задача 1. Найти фигуру, состоящую из всех точек, одинаково удаленных от данной плоскости a и данной точки А
lektsii.com - Лекции.Ком - 2014-2018 год. (0.011 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты