КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
IV. Примеры решения задач. Задача 1. Написать каноническое уравнение однополостного гиперболоида, если он пересекает плоскость xOy по эллипсуЗадача 1. Написать каноническое уравнение однополостного гиперболоида, если он пересекает плоскость xOy по эллипсу , а плоскость yOz по гиперболе . Решение. Каноническое уравнение однополостного гиперболоида имеет вид . Уравнение плоскости xOy: z=0. Следовательно, уравнение линии пересечения плоскости и гиперболоида ищем как решение системы Получаем уравнение эллипса, лежащего в плоскости xOy . По условию задачи этот эллипс задан уравнением . Значит, . Проводя аналогичные рассуждения, можно получить уравнение гиперболу, получающейся в сечении гиперболоида с плоскостью yOz . По условию, это гипербола . Следовательно, . Таким образом, искомое уравнение гиперболоида имеет вид . Ответ: . Задача 2. Напишите уравнение плоскости, параллельной плоскости yOz и пересекающей однополостный гиперболоид по гиперболе, действительная полуось которой равна 1. Решение. Уравнение плоскости параллельной плоскости yOz имеет вид x=h. Линия пересечения этой плоскости с гиперболоидом задается системой Откуда получаем уравнение , . Последнее уравнение – это каноническое уравнение гиперболы, действительная полуось которой равна . По условию она равна 1. , , , . Следовательно, искомая плоскость имеет уравнение . Ответ: .
|