Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Вернёмся к решению однородного линейного Д.У. – II с постоянными коэффициентами




Читайте также:
  1. IV. Подготовка к решению выражений со скобками.
  2. ВЫЧИСЛЕНИЕ ЛИНЕЙНОГО КОЭФФИЦИЕНТА КОРРЕЛЯЦИИ
  3. Геометрическая интерпретация задачи линейного программирования
  4. Задача линейного прогноза.
  5. Задача целочисленного линейного программирования
  6. Идея создания однородного социалистического правительства
  7. Квадратные уравнения с комплексными коэффициентами.
  8. Кейнсианский подход к решению проблемы макроэкономического равновесия. Парадокс бережливости
  9. Классификация автотранспортных средств. Таможенная экспертиза автотранспортных средств: объекты, задачи и подходы к их решению.

(1)

и характеристическим уравнением

(2)

Возможны три случая:

1) если корни характеристического уравнения (2) действительны и различны то общее решение Д.У. – II (1)

2) если корни уравнения (2) действительны и одинаковы (обозначим их ), то общее решение уравнения (1)

3) если корни уравнения (2) представляют собой пару взаимно–сопряжённых комплексных чисел с действительной частью и с коэффициентом мнимой части то общее решения уравнения (1)

Рассмотрим примеры:

1) — характ. уравнение

- общее решение.

2)

— два равных корня.

- общее решение.

3)

— комплексные корни ( ).

или — общее решение.

4) Найти частное решение уравнения при Составим и решим характеристич. уравнение

Общее решение Найдём производную

Подставив начальные условия, получим систему для определения.

С1 и С2:

 

{

 

 

{

 

Подставив полученные значения в общее решение, получим - искомое частное решение.

Проверка. Найдём для функции и подставим в данное уравнение.

— верное равенство, т.е. частное решение найдено верно.

 


Дата добавления: 2015-01-05; просмотров: 16; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.02 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты