КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Модуль вектора. Направляющие косинусы
Рассмотрим в пространстве прямоугольную систему координат Oxyz. Выделим на координатных осях Ox, Oy и Oz единичные векторы (орты), обозначаемые , , соответственно (см. рис 12).
Выберем произвольный вектор пространства и совместим его начало с началом координат: . Найдем проекции вектора на координатные оси. Проведем через конец вектора плоскости, параллельные координатным плоскостям. Точки пересечения этих плоскостей с координатными осями обозначим соответственно через M1, М2 и М3. Получим прямоугольный параллелепипед, одной из диагоналей которого является вектор . Тогда прх , прy , прz . По опре-
делению суммы нескольких векторов находим . А так как , то . (5.1) Но . (5.2) Обозначим проекции вектора на оси Ox, Oy и Oz соответственно через , и , т.е. , , . Тогда из равенств (5.1) и (5.2) получаем
Эта формула является основной в векторном исчислении и называется разложением вектора по ортам координатных осей. Числа , , называются координатами вектора , т.е. координаты вектора есть его проекции на соответствующие координатные оси. Векторное равенство (5.3) часто записывают в символическом виде: . Равенство означает, что Зная проекции вектора , можно легко найти выражение для модуля вектора. На основании теоремы о длине диагонали прямоугольного параллелепипеда можно написать , т.е. . Отсюда
т.е. модуль вектора равен квадратному корню из суммы квадратов его проекций на оси координат. Пусть углы вектора с осями Ox, Oy и Oz соответственно равны α, β, γ. По свойству проекции вектора на ось, имеем (5.5) Или, что то же самое, Числа называются направляющими косинусами вектора . Подставим выражения (5.5) в равенство (5.4), получаем Сократив на получим соотношение
т.е. сумма направляющих косинусов ненулевого вектора равна единице. Легко заметить, что координатами единичного вектора являются числа , т.е. Итак, задав координаты вектора, всегда можно определить его модуль и направление, т.е. сам вектор.
|