Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


ЛИНИИ ВТОРОГО ПОРЯДКА НА ПЛОСКОСТИ




Основные понятия

 

Рассмотрим линии, определяемые уравнениями второй степени относительно текущих координат

(11.1)

Коэффициенты уравнения – действительные числа, но по крайней мере одно из чисел А, В или С отлично от нуля. Такие линии называются линиями (кривыми) второго порядка. Ниже будет установлено, что уравнение (11.1) определяет на плоскости окружность, эллипс, гиперболу или параболу. Прежде чем переходить к этому утверждению, изучим свойства перечисленных кривых.

 

11.2. Окружность


 

Простейшей кривой второго порядка является окружность. Напомним, что окружностью радиуса R с центром в точке называется множество всех точек М плоскости, удовлетворяющих условию . Пусть точка М в прямоугольной системе координат Оху имеет координаты , а – произвольная точка окружности (см. рис. 48).

Тогда из уравнения получим уравнение

 


то есть

(11.2)

 

Уравнению (11.2) удовлетворяют координаты любой точки данной окружности и не удовлетворяют координаты никакой точки, не лежащих на окружности.

Уравнение (11.2) называется каноническим уравнением окружности.

В частности, полагая и , получим уравнение окружности с центром в начале координат

Уравнение окружности (11.2) после несложных преобразований примет вид При сравнении этого уравнения с общим уравнением (11.1) кривой второго порядка легко заметить, что для уравнения окружности выполнены два условия:

1) коэффициенты при и равны между собой;

2) отсутствует член, содержащий произведение текущих координат

Рассмотрим обратную задачу. Положив в уравнении (11.1) значения и получим

(11.3)

Преобразуем это уравнение:

т.е.

т.е.

(11.4)

Отсюда следует, что уравнение (11.3) определяет окружность при условии, Ее центр находится в точке , а радиус . Если же , то уравнение (11.3) имеет вид . Ему удовлетворяют координаты единственной точки . В этом случае говорят: «окружность выродилась в точку» (имеет нулевой радиус).

Если , то уравнение (11.4) а, следовательно, и равносильное уравнение (11.3) не определяет никакой линии, так как правая часть уравнения (11.4) отрицательна, а левая часть – не отрицательна (говорят: «окружность мнимая»).

 

Эллипс


Поделиться:

Дата добавления: 2015-01-15; просмотров: 157; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты