Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Расчет ведущего звена




Читайте также:
  1. IX. Обеспечение своевременных расчетов по полученным кредитам.
  2. АВС-анализ. Расчет оптимальной партии заказа
  3. Автоматизация выполнения расчетной части курсовой работы
  4. Агрегатный индекс может быть преобразован а среднеарифметический и среднегармонический индекс при отсутствии исходной информации для расчета агрегатной формы индекса.
  5. Актуальные проблемы учета расчетов с бюджетом по налогам и сборам в коммерческих организациях
  6. Актуарные расчеты будущих пенсионных обязательств.
  7. Алгоритм проверочного расчета вала
  8. Алгоритм расчета индивидуального индекса
  9. Алгоритм расчета общего индекса
  10. Амортизация ОФ, методы расчета амортизации.

 

8.1 Схема нагрузки сил на кривошип

 

8.1.1 Для этого надо отсоединить ведущие звено от стойки, а действие стойки заменить реакцией

 


Рисунок 24

 

Так как мы не знаем направление и линию действия реакции первоначально их задаем произвольно.

 

8.1.2 Приложим к звену все известные силы

 

8.1.2.1 Сила тяжести кривошипа

 

(43)

 

где m1=937 кг /с. 2/

q=9,81 м/с2

 

8.1.2.2 Сила инерции кривошипа

 

(44)

 

где аS1 – ускорение центра масс кривошипа

аS10

а0 – ускорение кривошипа в точке 0

а0=0

 

аS1=0

 

Данная сила будет отсутствовать

 

8.1.2.3 Момент инерции кривошипа

 

(45)

 

где e1 – угловое ускорение кривошипа

e1=0

 

Данный момент будет отсутствовать

 


Рисунок 25

 

8.1.3 Приложим к ведущему звену силу реакции группы Ассура

 

(46)

 

R12=16214000 /с.28/

 

Она будет равняться по величине, но направлена в противоположную сторону (Рисунок 26 ).

 

 
 


Рисунок 26

 

8.1.4 Приложим неизвестную силу

 

Направление и линию действия этой силы Рур мы незнаем. Приложим эту силу в любой точке кроме оси вращения кривошипа. Для удобства приложим ее в конце кривошипа под прямым углом к нему (Рисунок 27).

 


Рисунок 27 – схема нагрузки сил на кривошип в заданном положении для расчета

 

8.2 Найдем сумму моментов всех сил относительно точки О

 

(47)

 

где h21 – плече силы R21 относительно точки 0, мм

АО=41,5мм /с. 4/

R21=16214000Н /с.30/

h21=41,2мм

 

(48)

 

 

8.3 Составляем векторное уравнение

 

(49)

 

R01 – сила с которой стойка действует на кривошип, Н

R21=16214000Н /с.30/

G1=9192Н /с. 29/

 

8.4 Выбираем масштаб

 

 

8.5 Определяем длины векторов всех сил на графике

 

(50)

 

где mР=100000 Н/мм

 

Численные значения длин векторов сил на графике приведены в таблице 7

 

Таблица 7

ZХ R12 Рур G1
Значение, Н
N, мм 162,14 160,9 0.09

 



Строим график данного векторного уравнения и найдем R01

 

Для этого на ватмане возьмем произвольную точку. Начинаем переносить вектора с этой точки. Переносим все векторы параллельно самим себе друг за другом. Для нахождения вектора R01 соединяем линией конец последнего вектора с начальной точкой. Указываем направление. (Рисунок 28).

 

 

 
 

 
 


Рисунок 28

8.6 Определяем численное значение силы R01

 

(51)

 

где D – длина вектора R01 на графике

D=19,58мм

mР=100000Н/мм /с. 32/

 

 


Дата добавления: 2015-01-19; просмотров: 13; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.014 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты