КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Общая постановка задачи изменения условий контракта⇐ ПредыдущаяСтр 23 из 23 При изменении условий выплат решение заключается в разработке соответствующего уравнения эквивалентности. Если приведение платежей осуществляется на некоторую начальную дату, то получим следующие уравнения эквивалентности в общем виде:
– при использовании простых процентов;
– при использовании сложных процентов.
Здесь Sj и nj – параметры заменяемых платежей; Sk и nk – параметры заменяющих платежей. Конкретный вид равенства определяется содержанием контракта, поэтому методику разработки уравнений эквивалентности рассмотрим на примерах [5, с. 79].
Пример 4.13. Две суммы 10 и 5 млн. руб. должны быть выплачены 1 ноября и 1 января следующего года. Стороны согласились пересмотреть порядок выплат: должник 1 декабря выплачивает 6 млн. руб. Остаток долга гасится 1 марта. Необходимо найти сумму остатка при условии, что пересчет осуществляется по ставке простых процентов, равной 20 % (K = 365). Графическое изображение условий задачи приведено на рис. 4.3:
Рис. 4.3
Пусть базовой датой будет момент выплаты 5 млн. руб. Уравнение эквивалентности тогда будет таким:
. Отсюда S = 9,531 млн. руб.
При изменении базовых дат приходим к незначительным смещениям результатов. Например, при приведении платежей к 1 марта получим следующее уравнение эквивалентности:
. Теперь S = 9,523 млн. руб. [5, с. 80].
Пример 4.14. Имеется обязательство уплатить 10 млн. руб. через 4 месяца и 7 млн. руб. через 8 месяцев после некоторой даты. По новому обязательству необходимо выплату произвести равными суммами через 3 и 9 месяцев. Изменение условий осуществляется с использованием простой ставки, равной 10 % (K = 360).
Примем в качестве базовой даты начало отсчета времени. Уравнение эквивалентности в таком случае выглядит так:
.
Отсюда S = 8,521 млн. руб. [5, с. 80–81].
Пример 4.15. Существует обязательство уплатить 100 тыс. руб. через 5 лет. Стороны согласились изменить условия погашения долга следующим образом: через 2 года выплачивается 30 тыс. руб., а оставшийся долг – спустя 4 года после первой выплаты (см. рис. 4.4). Необходимо определить сумму последнего платежа.
Рис. 4.4
Уравнение эквивалентности составим на начало отсчета времени:
,
где v – дисконтный множитель. Аналогичное по смыслу равенство можно составить на любую дату, например, на конец шестого года. В этом случае
.
Данное уравнение легко получить из предыдущего, умножив его на . При решении любого из приведенных уравнений относительно S находим (при условии, что ставка равна 10 % годовых) S = 133,233 тыс. руб. Выбор базовой даты при применении сложных процентов не влияет на результаты расчетов по замене платежей [5, с. 81].
Рекомендуемая литература 1. Багаев, Б. М. Финансовая математика : учеб.-метод. пособие / Б. М. Багаев. – Красноярск : КрасГАУ, 2004. – 136 с. 2. Бочаров, П. П. Финансовая математика / П. П. Бочаров, Ю. Ф. Касимов. – М. : Физматлит, 2005. – 576 с. 3. Медведев, Г. А. Начальный курс финансовой математики / Г. А. Медведев. – М. : Остожье, 2000. – 267 с. 4. Охорзин, В. А. Математическая экономика : учебник / В. А. Охорзин. – Красноярск : СибГАУ, 2006. – 232 с. 5. Четыркин, Е. М. Финансовая математика : учебник / Е. М. Четыркин. – М. : Дело, 2001. – 400 с.
|