Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Метод подбора формы частного решения.




Рассмотрим сначала уравнение второго порядка

1) Пусть правая часть представляет собой квазиполином .

Ищем частное решение в виде . Здесь - полином n-ой степени, - полином, степень которого надо определить. , .

а) Если - не корень характеристического уравнения, то , и многочлен надо выбирать той же степени, что и , т.е. степени n.

б) Если - простой корень характеристического уравнения, то . В этом случае многочлен надо выбирать той же степени, что и , т.е. степени n. Тогда степень многочлена надо выбирать равной n+1. Однако при дифференцировании производная свободного члена (постоянной) равна нулю, поэтому можно выбирать в виде = .

в) Если - кратный корень характеристического уравнения, то . В этом случае многочлен надо выбирать той же степени, что и , т.е. степени n. Тогда степень многочлена надо выбирать равной n+2. Однако при двукратном дифференцировании производная не только свободного члена равна нулю, но и производная линейного члена равна нулю. Поэтому можно выбирать в виде = .

Пример. ,

, - не корень характеристического уравнения, поэтому частное решение надо искать в том же виде, что и правая часть, . Подставляем в неоднородное уравнение с правой частью . . . Корень содержится один раз среди корней характеристического уравнения, поэтому частное решение ищется в виде .

Подставляем в неоднородное уравнение с правой частью . . Суммируя оба частных решения, получаем частное решение неоднородного уравнения для исходной правой части:

. Общее решение неоднородного уравнения будет

. 2) Правая часть имеет вид Если не корни характеристического уравнения, то частное решение ищется в том виде, в котором задана правая часть:

, где - полиномы степени m – максимальной из степеней полиномов . б) Если - пара корней характеристического уравнения, то частное решение ищется в виде

, Пример.

Пара корней = - пара корней характеристического уравнения.

Подставляем в неоднородное уравнение, получаем

, откуда ,

Рассмотрим неоднородное уравнение n-го порядка, покажем, как в нем применять метод подбора формы частного решения.Здесь ситуация сложнее, так как в характеристическом уравнении n корней, действительные корни и комплексно сопряженные, простые и кратные корни.

1) Пусть правая часть неоднородного уравнения имеет вид

a) Если не является корнем характеристического уравнения, то частное решение неоднородного уравнения ищется в том же виде, что и правая часть .

b) Если - корень характеристического уравнения r-ой кратности, то частное решение неоднородного уравнения ищется в виде .

2) Пусть правая часть неоднородного уравнения имеет вид

а) Если пара комплексно сопряженных корней не является корнями характеристического уравнения, то частное решение неоднородного уравнения ищется в том же виде, что и правая часть

, где степень m многочленов – максимальная из степеней многочленов .

b) Если пара комплексно сопряженных корней является корнями характеристического уравнения r-ой кратности, то частное решение неоднородного уравнения ищется в виде

.

 

Пример. ,

. . содержится в корнях характеристического уравнения 2 раза, поэтому . Подставляя это частное решение в неоднородное уравнение с правой частью , получим

. Корни не содержатся в корнях характеристического уравнения, поэтому . Подставляя это частное решение в неоднородное уравнение с правой частью , получим .

. . + .

Пример.

. содержится в корнях характеристического уравнения 3 раза, поэтому .

. Корни (пара корней) содержатся в корнях характеристического уравнения один раз, поэтому . Неопределенные коэффициенты определяются, как и выше, подстановкой в уравнение и сравнением коэффициентов при одинаковых степенях x, при sinx, cosx, xsinx, xcosx

 

Билет 9


Поделиться:

Дата добавления: 2015-08-05; просмотров: 123; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты