Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Интеграл с переменным верхним пределом.




Определенный интеграл представляет собой функцию пределов интегрирования. Это ясно даже из геометрической интерпретации интеграла как площади криволинейной трапеции. Изменяя пределы интегрирования, мы изменяем основание трапеции, изменяя тем самым ее площадь.Рассмотрим интеграл как функцию верхнего предела интегрирования – интеграл с переменным верхним пределом . Переменная интегрирования по свойству 9 определенного интеграла – «немая переменная», ее можно заменить z или t или как- либо еще. Никакого отношения к верхнему пределу интегрирования она не имеет.

Теорема о производной интеграла по переменному верхнему пределу(основная теорема математического анализа)Пусть функция непрерывна на отрезке , пусть . Тогда .

Доказательство. .

При доказательстве мы воспользовались теоремой о среднем и непрерывностью функции .

 

2.

В случае кратного действительного корня одно из решений можно выбрать в форме . Второе решение будем выбирать в виде . Подставим в дифференциальное уравнение, чтобы определить .

,

Так как k - корень характеристического уравнения, то . Так как k еще и кратный корень, то по теореме Виета . Поэтому . Для определения имеем уравнение , отсюда . Выберем , получим . Следовательно, . Решения линейно независимы, так как . Поэтому общее решение линейного дифференциального уравнения с постоянными коэффициентами в случае кратного корня можно записать по формуле

.

 

Билет 16

1 Несобственные интегралы от непрерывной функции по бесконечному промежутку (первого рода).Пусть отрезок числовой оси неограничен. Это возможно в трех случаях: . Определим несобственные интегралы как пределы , , . В последнем интеграле a и b независимо друг от друга стремятся к . Если , то предел в правой части последнего равенства называется главным значением несобственного интеграла. Если эти пределы существуют и конечны, то несобственные интегралы называются сходящимися. Если предел не существует или бесконечен, то такой несобственный интеграл называется расходящимся.

Если сходятся интегралы от функций , то сходятся интегралы от функций . Это следует из теорем о пределах.

Пример. , интеграл сходится.

Пример. , интеграл расходится.

Признаки сравнения несобственных интегралов(достаточные признаки сходимости и расходимости несобственных интегралов).

1 признак. Теорема.Пусть при выполнено неравенство .

Если интеграл сходится, то и интеграл сходится. Если интеграл расходится, то и интеграл расходится. Доказательство. Проинтегрируем неравенство на отрезке , . Так как обе функции на отрезке имеют только положительные значения, то интегралы от этих функций представляют собой возрастающие функции от верхнего предела b. Если сходится ( = I), то при любом b > a = I (I – конечное число). Поэтому - монотонно возрастающая, ограниченная функция верхнего предела интегрирования b. Следовательно, по теореме Вейерштрасса этот интеграл как функция b имеет предел

, т.е. интеграл сходится.Пусть теперь расходится. Если сходится, то по доказанному и сходится, противоречие. Теорема доказана.

2 признак сравнения. Теорема.Пусть при x>a . Если существует конечный предел , то интегралы , , сходятся или расходятся одновременно (если один сходится, то и другой сходится, если один расходится, то и другой расходится).

Доказательство. Из определения предела следует

. Если интеграл сходится, то по первому признаку сравнения сходится интеграл , а, следовательно, сходится интеграл . Если интеграл сходится, то сходится интеграл , а, следовательно, по первому признаку сравнения сходится интеграл . Пусть интеграл расходится. Если интеграл сходится, то по первому признаку сравнения сходится интеграл , противоречие. Пусть интеграл расходится. Если интеграл сходится, то по первому признаку сравнения сходится интеграл , противоречие. Теорема доказана. Эталонами служат обычно интегралы Дирихле или интегралы от показательной функции. Пример. сходится по второму признаку сравнения, интеграл сравнения .

Пример. сходится по первому признаку, интеграл сравнения

.

2.


Поделиться:

Дата добавления: 2015-08-05; просмотров: 103; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты