Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Наибольшее и наименьшее значения функции на отрезке




Читайте также:
  1. II. Функции
  2. II.ФУНКЦИИ ШКОЛЬНОЙ ФОРМЫ
  3. IV. Функции
  4. IV. Функции
  5. IV. Функции
  6. IV. Функции
  7. S:В каких единицах измерения должен быть указан аргумент функции SIN?
  8. VIII. Найдите и выпишите из текста предложения со словами it, one. Укажите значения этих слов. Переведите предложения на русский язык.
  9. Администрация морского порта, ее значение и функции.
  10. Алгоритмы вычисления функции шифрования f и ключей для DES.

Пусть функция у = f(x) непрерывна на отрезке [a, b]. Из свойств непрерывных функций следует, что эта функция в указанной области достигает своего наибольшего и наименьшего значений. Причём эти значения функция может принимать либо во внутренней точке отрезка, либо на границе отрезка.

На основе вышесказанного правило нахождения наибольшего и наименьшего значения функции на отрезке сводится к следующим действиям:

1) Найти критические точки функции.

2) Найти значения функции в критических точках.

3) Найти значения функции на концах отрезка.

4) Выбрать среди полученных значений наибольшее и наименьшее.

Пример. Найти наибольшее и наименьшее значения функции

на отрезке [-1,3].

Решение. Находим критические точки данной функции, определим производную функции

;

откуда f¢(x) = 0 при х1 = 1 и при х2 = 2 , обе эти точки принадлежат отрезку [-1,3] . Находим значения функции в критических точках х1 , х2 и на концах отрезка -1 , 3: f(1) = 1, f(2) = 0, f(-1) = -27, f(3) = 5. Сравнивая данные величины, находим наибольшее и наименьшее значения

fниб = 5 в точке х = 3, fним = -27 в точке х = -1.


Дата добавления: 2015-09-14; просмотров: 5; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты