КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Исследование функции при помощи производныхТеоремы о среднем При исследовании поведения дифференцируемых на некотором отрезке [a,b] функций важны следующие теоремы о среднем. Теорема (Ролль). Если функция f(x) непрерывна на отрезке [a, b], дифференцируема на интервале (а, b) и значения функции на концах отрезка равны f(a) = f(b), то на интервале (а, b) существует точка с, a < с < b, в которой производная f¢(x) равная нулю, т.е. f¢(с) = 0. Доказательство. По свойству функций, непрерывных на отрезке функция f(x) на отрезке [a, b] принимает наибольшее и наименьшее значения. Обозначим эти значения М и m соответственно. Возможны два различных случая М = m и M ¹ m. Пусть M = m. Тогда функция f(x) на отрезке [a, b] сохраняет постоянное значение и в любой точке интервала ее производная равна нулю. В этом случае в качестве с можно принять любую точку интервала. Пусть М ≠ m. Так как значения на концах отрезка равны, то функция принимает хотя бы одно из значений М или m во внутренней точке с интервала (a,b). Пусть, например, функция принимает значение М в точке х = с (a < с < b), т.е. f(с) = M. Так как М - наибольшее значение функции, то для всех Найдём производную f¢(x) в точке х = с:
В силу предыдущего неравенства выполняется условие Если же Таким образом, В случае, когда f(с) = m, доказательство аналогичное. Геометрический смысл теоремы Ролля состоит в том, что при выполнении условий теоремы на интервале (a, b) существует по крайней мере одна точка с, в которой касательная к графику y = f(x) параллельна оси Ох. Теорема (Коши). Если функции f(x) и g(x) непрерывны на отрезке [a, b] и дифференцируемы на интервале (a, b) и g¢(x) ¹ 0 на интервале (a, b), то существует по крайней мере одна точка с, a < с < b, такая, что
Т.е. отношение приращений функций на данном отрезке равно отношению производных в точке с. Доказательство. Рассмотрим вспомогательную функцию
которая на интервале [a, b] удовлетворяет условиям теоремы Ролля. Легко видеть, что при х = а и х = b F(a) = F(b) = 0. Тогда по теореме Ролля существует такая точка с, a < с < b, такая, что F¢(с) = 0. Т.к.
Но Теорема (Лагранж). Если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на интервале (а, b), то на этом интервале найдется по крайней мере одна точка с Доказательство. Теорему Лагранжа можно рассматривать, как частный случай теоремы Коши. Действительно, положим g(x) = х, тогда g¢(x)=1, g¢(с)=1 и
Полученное выражение (5.13) называется формулой Лагранжа или формулой конечных приращений. Согласно этой формуле приращение дифференцируемой функции на отрезке [a, b] равно приращению аргумента, умноженному на значение производной функции в некоторой внутренней точке этого отрезка. Раскрытие неопределённостей(правила Лопиталя) К разряду неопределенностей, связанных с вычислением пределов, принято относить следующие соотношения:
Теорема (правило Лопиталя) Если функции f(x) и g(x) дифференцируемы в вблизи точки а, непрерывны в точке а, g¢(x) отлична от нуля вблизи а и f(a) = g(a) = 0, то предел отношения функций при х® а равен пределу отношения их производных, если этот предел (конечный или бесконечный) существует.
Доказательство. Применив формулу Коши, получим:
где с - точка, находящаяся между а и х. Учитывая, что f(a) = g(a) = 0:
Пусть при х ® а отношение
Примеры. 1) Найти предел: 2) Найти предел:
следует заметить, что правило Лопиталя – всего лишь один из способов вычисления пределов. Часто в конкретном примере наряду с правилом Лопиталя может быть использован и какой – либо другой метод (замена переменных, домножение и др.). 3) Найти предел:
Применим правило Лопиталя еще раз.
Неопределенности вида ln y = g(x) lnf(x). 4). Найти предел Здесь y = x x, ln y = x lnx. Тогда 5) Найти предел
Применяем правило Лопиталя еще раз.
|