Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Максимум и минимум функций




Читайте также:
  1. A) отличие от сферы частичных функций личности;
  2. III.Характеристика обобщенных трудовых функций
  3. III.Характеристика обобщенных трудовых функций
  4. А) Для финансирования задач и функций государства и местного самоуправления;
  5. АБСОЛЮТНАЯ НЕОБХОДИМОСТЬ МАКСИМУМА
  6. АБСОЛЮТНЫЙ МАКСИМУМ, СОВПАДАЯ С МИНИМУМОМ, ПОНИМАЕТСЯ НЕПОСТИЖИМО
  7. Быстрые клавиши для вызова функций Google Chrome
  8. В. Терминологический минимум
  9. Вложение функций ЕСЛИ()
  10. Все переменные конструктораUserстановятся приватными, так как доступны только через замыкание, из внутренних функций.

Определение. Функция f(x) имеет в точке х1 максимум, если ее значение в этой точке больше значений f(x1 +D x) < f(x1) во всех точках некоторого интервала, содержащего точку х1. Функция f(x) имеет в точке х2 минимум, если f(x2 +Dx) > f(x2) при любом D х (D х может быть и отрицательным).

Очевидно, что функция, определенная на отрезке может иметь локальный максимум (локальный минимум) только в точках, находящихся внутри этого отрезка. Необходимо различать максимум (минимум) функции и её наибольшее (наименьшее) значение на отрезке – это понятия принципиально различные.

Определение. Точки максимума и минимума функции называются точками экстремума.

Теорема (необходимое условие существования экстремума). Если функция f(x) дифференцируема в точке х = х1 и точка х1 является точкой экстремума, то производная функции обращается в нуль в этой точке.

Доказательство. Предположим, что функция f(x) имеет в точке х = х1 максимум. Тогда при достаточно малых положительных D х > 0 верно неравенство:

, т.е.

Тогда

По определению:

.

Т.е. если D х ® 0, но D х < 0, то f¢(x1) ³ 0, а если D х ® 0, но D х > 0, то f¢(x1) £ 0.

А это возможно только в том случае, если при D х ® 0 f¢(x1) = 0.

Для случая, если функция f(x) имеет в точке х2 минимум теорема доказывается аналогично. Теорема доказана.

Определение. Критическими точками функции называются точки, в которых производная функции не существует или равна нулю.

Теорема (достаточные условия 1 существования экстремума).Пусть функция f(x) непрерывна в интервале (a, b), который содержит критическую точку х1, и дифференцируема во всех точках этого интервала (кроме, может быть, самой точки х1). Тогда если при переходе через точку х1 слева направо производная функции f¢(x) меняет знак с “+” на “-“, то в точке х = х1 функция f(x) имеет максимум, а если производная меняет знак с “-“ на “+”- то функция имеет минимум.

Доказательство. Пусть

По теореме Лагранжа: f(x) – f(x1) = f¢(с)(x – x1), где x < с < x1.

Тогда: 1) если х < x1, то с < x1; f¢(с) > 0; f¢(с)(x – x1) < 0, следовательно

f(x) – f(x1) < 0 или f(x) < f(x1).

2) если х > x1, то с > x1 f¢(с) < 0; f¢(с)(x – x1) < 0, следовательно



f(x) – f(x1) < 0 или f(x) < f(x1).

Таким образом, значение функции f(x) в точке х1 является наибольшим на интервале , т.е. f(x) < f(x1) в всех точках вблизи х1. Это означает, что х1 – точка максимума.

Доказательство теоремы для точки минимума производится аналогично.

Теорема (достаточные условия 2 существования экстремума).Если в точке х1 первая производная функции f(x) равна нулю ( f¢(x1) = 0), а вторая производная в точке х1 существует и отлична от нуля ( f¢¢(x1) ≠ 0), то функция f(x) в точке х = х1 имеет максимум, если f¢¢(x1) < 0 и минимум, если f¢¢(x1) > 0.

Доказательство. Пусть f¢(x1) = 0 и f¢¢(x1) < 0. Т.к. функция f(x) непрерывна, то f¢¢(x1) будет отрицательной и в некоторой малой окрестности точки х1.

Т.к. f¢¢(x) = (f¢(x))¢ < 0, то f¢(x) убывает на отрезке, содержащем точку х1, но f¢(x1) = 0, т.е. f¢(x) > 0 при х < x1 и f¢(x) < 0 при x > x1. Это и означает, что при переходе через точку х = х1 производная f¢(x) меняет знак с “+” на “-“, т.е. в этой точке функция f(x) имеет максимум.



Для случая минимума функции теорема доказывается аналогично.

Если f¢¢(x) = 0, то характер критической точки неизвестен. Для его определения требуется дальнейшее исследование.


Дата добавления: 2015-09-14; просмотров: 14; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты