![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Кривая. Замена параметра.Пусть E – обычное геометрическое пространство или плоскость. Тогда E является точечным евклидовым пространством. Мы будем вести речь про пространство, но всё сказанное ниже с незначительными изменениями верно и для случая, когда E – плоскость. Пусть в пространстве задана декартова СК Oxyz. Мы будем отождествлять произвольную точку M и её радиус-вектор . Определение. Путем (или параметризованной кривой) называется непрерывное отображение c: I –®E , где I – некоторый интервал числовой прямой. Таким образом, путь сопоставляет каждому значению t Î I точку в пространстве. В силу нашей договоренности об отождествлении, можно сказать, что путь сопоставляет каждому значению t Î I вектор. Поэтому путь – это непрерывная вектор-функция. Подчеркнем, что путь – это отображение (в отличие от кривой). Определение. Пусть c: I –®E – путь. Тогда его траектория – множество g=c(I) в пространстве называется кривой. Вектор-функция c(t)=x(t)i + y(t)j + z(t)k называется параметризацией кривой g . Запись
y = y(t), z = z(t), t Î I, называется параметрическими уравнениями кривой g. Если использовать обозначение – это вектор с переменными координатами (x, y, z), то параметрические уравнения можно записать в виде одного векторного равенства = c(t). Также можно сказать, что кривая g - это годограф вектор-функции c(t). Замечание. При таком определении кривая может выглядеть совсем непохоже на интуитивное представление о кривой. Например, кривая Пеано проходит через каждую точку квадрата, и поэтому она имеет ненулевую площадь. Такой пример рассматривается в рамках спецкурса по топологии. Это говорит о том, что понятие кривой, на самом деле, не такое простое. Определение. Простой дугой (или элементарной кривой) называется множество g в пространстве или на плоскости, гомеоморфное открытому интервалу числовой прямой.
Определение. Путь c называется простым, если c – взаимнооднозначное отображение. Простой путь задает кривую без самопересечений: при движении по кривой мы проходим каждую точку ровно один раз. Но образ интервала при таком отображении не всегда является простой дугой.
Вы привыкли, что если функция дифференцируема, то ее график не имеет изломов. Но кривая, определяемая вектор-функцией не является её графиком. Пример 1. Путь c(t) = (t2, t3), t Î R определяет на плоскости кривую, которая называется полукубической параболой. Этот путь дифференцируемый класса C¥(R). Имеем c¢(t) = (2t, 3t2) и c¢(0) = , т.е. данный путь не является регулярным. Причем, регулярность нарушается как раз в той точке, где кривая имеет излом. Из теоремы 1 (следующий параграф) следует, что гладкая класса C1регулярная кривая не имеет изломов. Полукубическая парабола – это пример простой дуги.
Пример 3. Одна и та же кривая может задаваться разными параметрическими уравнениями. Например, верхняя половина полукубической параболы может быть задана следующими уравнениями.
y = t3, t Î (0, + ¥) y = e3t, t Î R Ясно, что вторая система получается из первой с помощью замены t = et, t Î R . Обозначим j(t) = et ; тогда j – это отображение j: R–®(0, + ¥). Так возникает понятие «замена параметра». Определение. будет другой путь, но его образ d(I1) – та же самая кривая g. Говорят, что отображение j осуществляет замену параметра кривой. Определение. Замена параметра t=j(u) называется допустимой, если j – функция касса Cn(I1)и j¢(u) ¹ 0 " uÎ I1. Пусть c – регулярный путь. Тогда d¢(u)= c(j(u))¢ = j¢(u)c¢(t). Мы видим, что путь d(u) является регулярным тогда и только тогда, когда замена параметра является допустимой. Другими словами, допустимая замена параметра сохраняет регулярность пути. Определение. Регулярные пути c: I –®E и d: I1–®E называются эквивалентными, если существует такая допустимая замена параметра j: I1 –® I , t = j(u), что d = c°j. Иногда говорят, что регулярная кривая – это класс эквивалентных друг другу регулярных путей. Можно сказать, что эквивалентные пути имеют одинаковую траекторию, но проходят ее за различные промежутки времени и с разной скоростью. Например, замена параметра t = et, является допустимой, и поэтому пути c(t) = (t2, t3), t Î (0, + ¥) и d(t) = (e2t, e3t), tÎR являются эквивалентными. Упражнения. 1. Является ли регулярным путь (a cos3t, a sin3t), tÎR? 2. Является ли допустимой замена параметра t = , uÎR? В какой интервал она переводит числовую прямую?
|