Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Задачи.




Читайте также:
  1. VI. Выводы. Предложения. Задачи.
  2. Вы на истинном пути, это видно и из другого поста, но жизнь — важная часть этой задачи.
  3. Задачи.
  4. Задачи.
  5. Задачи.
  6. Задачи.
  7. Задачи.
  8. Задачи.
  9. Задачи.

Задача 1.

Символ изотопа элемента . Используя таблицу Менделеева, укажите: а) название элемента; б) число протонов и нейтронов, содержащихся в ядре; в) количество электронов, содержащихся в электронной оболочке атома.

 

Задача 2.

Определите, какую часть массы нейтрального атома (m=19,9272×10-27 кг) составляет масса его электронной оболочки. Масса электрона равна 9,1×10¾31 кг.

 

Задача 3.

Во сколько раз радиус ядра тория больше радиуса ядра водорода ? Дефектом масс пренебречь. Плотность ядерного вещества можно считать одинаковой для всех элементов.

 

Задача 4.

Определите плотность ядерного вещества. Расчет произведите, полагая, что все нуклоны (протоны и нейтроны) плотно упакованы в сферическом слое. Дефектом масс пренебречь.

 

Задача 5.

Определите энергию связи, приходящуюся на один нуклон в ядре атома бериллия , если масса его изотопа равна 9,01505 а. е. м. (1 а. е. м. = 1,66×10-27 кг – атомная единица массы). Масса протона равна 1,00814 а. е. м., масса нейтрона 1,00899 а. е. м.

 

Задача 6.

Определите, является ли реакция экзотермической или эндотермической. Найдите энергию реакции. Масса атома лития 11,65079×10¾27 кг, атома водорода 1,6736×10-27 кг, атома бериллия 11,65231×10-27 кг, масса нейтрона 1,675×10-27 кг.

 

Задача 7.

Основная термоядерная реакция на Солнце – превращение четырех протонов в ядро гелия ¾ сопровождается выделением энергии. Фактически мощность Солнца составляет 4×1026 Вт. Определите, сколько протонов «сгорает», то есть превращается в ядра гелия ежесекундно. Масса изотопа гелия равна 4,00388 а. е. м.

 

Задача 8.

На Солнце при превращении четырех протонов в ядро образуется две незаряженные элементарные частицы практически с нулевой массой (нейтрино). С учетом числа ежесекундно «сгорающих» протонов (см. предыдущую задачу), определите, сколько нейтрино генерируется в недрах Солнца каждую секунду.

 

Задача 9.

Первоначальная масса радиоактивного изотопа иода (период полураспада 8 суток) равна 1 г. Определите начальную активность изотопа и его активность через 3 суток.



 

Задача 10.

Найдите постоянную радиоактивного распада радона, если известно, что число его атомов уменьшилось за 1 сутки на 18,2 %.

 

Задача 11.

Чтобы определить возраст древней ткани, найденной в одной из египетских пирамид, была определена активность в ней атомов изотопа углерода . Она оказалась равной 9,2 распадам в минуту на один грамм углерода. Активность в живых растениях соответствует 14,0 распадам в минуту на один грамм углерода. Период полураспада равен 5730 лет. Оцените возраст ткани.

 

Задача 12.

Определите суточный расход чистого урана атомной электростанцией тепловой мощностью 300 МВт, если энергия, выделяющаяся при одном акте деления, составляет 200 МэВ.

 

Задача 13.

Дополните недостающие обозначения x в следующих ядерных реакциях:

1) ; 2) ;

3) 4) .

Тема № 9.

Номенклатура химических соединений. Законы стехиометрии.

 

знать:

- законы стехиометрии (законы сохранения массы, эквивалентов, кратных отношений постоянства состава, Авогадро, Гей-Люссака);

- основные классы неорганических соединений.

Задача 1 (1.1)

При сжигании 100 г углеводорода получено 274,32 г CO2 и 224,6 г H2O. Найдите эмпирическую формулу углеводорода.



 

Задача 2 (1.2) (для разбора в УМП)

При сжигании 100 г органического вещества получено 191,3 г CO2 и 117,4 г H2O. Установите эмпирическую формулу этого соединения.

 

Задача 3 (1.5)

Какое количество CO2 выделится из 1 кг мела (CaCO3), загрязненного 5 % песка?

 

Задача 4 (г8с103) (для разбора в УМП)

Какой объем воздуха при нормальных условиях потребуется для взаимодействия с 270 г алюминия, содержащего 20% примесей? Какое количество вещества оксида алюминия при этом получится?

 

Задача 5 (1.13)

Определите, какой металл образует оксид M3O4, если содержание металла в нем составляет 90,66 %.

 

Задача 6 (теор1.4)

Расставьте коэффициенты в уравнениях реакций

1) Na + H2O ® NaOH + H2;

2) Ba(NO3)2 + K3PO4 ® Ba3(PO4)2 + KNO3;

3) Cd(NO3)2 + Na2S ® CdS + NaNO3;

4) C2H6 + O2 ® CO2 + H2O;

5) Fe2O3 + CO ® Fe + CO2;

6) BF3 + NaBH4 ® NaBF4 + B2H6.

 

Задача 7 (г8с44)

Определите тип химической связи, запишите схемы их образования для веществ с формулами: S2, K2O, H2S, N2, Li3N, Cl3N.

 

Задача 8 (1.8)

К каким классам неорганических соединений относятся следующие вещества: Na, NaOH, NaCl, Na2O, S, H2SO4, Cu(OH)2, H2S, NaHCO3, SO3, AlOHCl2. Укажите систематические названия всех этих веществ.

 

Задача 9 (г8с61, 170)

Определите степени окисления элементов в следующих веществах: Na2S, Cl2, Fe2O3, NaH, CaH2, H2S, HCl, H3N, K2O, OF2, O2, Na2SO4, K2SO3, Fe(NO3)3, Fe(NO2)2, NaHSO4, CuOHNO3, Mg(HCO3)2, Ca3(PO4)2. Укажите систематические названия всех этих веществ.

 

Задача 10 (г8с100, 157)

Запишите уравнения типичных для кислот химических реакций по следующим схемам:

1) фосфорная кислота + гидроксид натрия ® фосфат натрия + вода;

2) азотная кислота + гидроксид железа (II) ® нитрат железа (II) + вода;

3) серная кислота + оксид меди(II) ® сульфат меди + вода;

4) соляная кислота + цинк ® хлорид цинка + водород;

5) серная кислота + хлорид бария ® сульфат бария + соляная кислота;

6) соляная кислота + карбонат кальция ® хлорид кальция + вода + углекислый газ.

Укажите тип каждой из этих реакций (разложения, соединения, замещения, обмена)

 

Задача 11 (г8с161)

Запишите уравнения типичных для оснований химических реакций по следующим схемам:

1) гидроксид натрия + соляная кислота ® хлорид натрия + вода

2) гидроксид натрия + оксид азота (III) ® нитрит натрия + вода;

3) гидроксид калия + оксид серы (IV) ® сульфит калия + вода;

4) гидроксид калия + сульфат меди (II) ® гидроксид меди (II) + сульфат калия.

Укажите тип каждой из этих реакций (разложения, соединения, замещения, обмена)

 

Задача 12 (г8с161)

Запишите уравнения типичных для основных и кислотных оксидов химических реакций по следующим схемам:

1) оксид калия + вода ® гидроксид калия;

2) оксид азота (V) + вода ® азотная кислота;

3) оксид меди (II) + азотная кислота ® нитрат меди (II) + вода;

4) оксид серы (IV) + гидроксид натрия ® сульфит натрия + вода;

5) оксид кальция + оксид азота (V) ® нитрат кальция.

Укажите тип каждой из этих реакций (разложения, соединения, замещения, обмена)

 

Задача 13 (г8с70)

Составьте формулы оксидов, соответствующих гидроксидам Fe(OH)2, Fe(OH)3, Cu(OH)2 и дайте названия всех веществ.

 

Задача 14 (г8с70)

Составьте химические формулы кислот, соответствующих следующим оксидам: N2O3, CO2, P2O5, SiO2, SO2 и дайте названия всех веществ.

 

Задача 15 (1.11)

Напишите уравнения реакций, посредством которых получаются следующие соединения: Ba ® Ba(OH)2 ® BaCO3 ® BaCl2 ® BaSO4.

 

Задача 16.

При взаимодействии с избытком соляной кислоты 5,29 г сплава магния и алюминия выделилось 5,6 л водорода при нормальных условиях. Определите состав сплава.

 

Тема № 10.

Скорость химических реакций. Химическое равновесие.

 

Знать:

- смысл понятий экзотермические и эндотермические реакции;

- что такое энтальпия (тепловой эффект химической реакции), энергия Гиббса;

- закон Гесса;

- что такое скорость химической реакции;

- закон действующих масс;

- правило Вант-Гоффа;

- уравнение Аррениуса.

 

Задача 1.

Какое энерговыделение характерно для образования моля фторводорода, если энергия разрыва связей в молекулах H2, F2, HF составляет соответственно 432 кДж/моль, 155 кДж/моль и 566 кДж/моль? Напишите уравнение реакции.

 

Задача 2.

Определите энергию двойной связи С=С, если известна энтальпия реакции

C2H4(г) + Н2(г)® C2H6(г), DН= - 137 кДж/моль

и средние энергии связей EC¾H=412 кДж/моль, EC¾C=348 кДж/моль, EH¾H=430 кДж/моль.

 

Задача 3.

Сожжены с образованием H2O(г) равные объемы водорода и ацетилена (C2H2), взятые при одинаковых условиях. Напишите уравнения реакций, определите, в каком случае выделится большее количество теплоты и во сколько раз. Энтальпия образования H2O(г), CO2(г), C2H2(г) равна соответственно -241,8 кДж/моль; -393,5 кДж/моль; 226,8 кДж/моль.

 

Задача 4.

Энтальпия образования C2H5OH(г), CO2(г) и H2O(г) в стандартных условиях равны соответственно -235 кДж/моль; -393,8 кДж/моль; -241,8 кДж/моль. Рассчитайте энтальпию сгорания C2H5OH(г). Вычислите энтальпию сгорания C2H5OH(г), используя энергию связей EC¾H=412 кДж/моль, EC¾C=348 кДж/моль, EC¾O=360 кДж/моль, EO¾H=460 кДж/моль, EO¾O=490 кДж/моль, EC=O=790 кДж/моль. Сравните полученные результаты.

 

Задача 5.

Найдите массу метана, при полном сгорании которого выделяется количество теплоты, достаточное для нагревания 100 г воды от 20 до 30 °С. Мольную теплоемкость воды примите равной 75,3 Дж/(моль×К). Энтальпия образования H2O(г), CO2(г), CH4(г) равна соответственно -241,8 кДж/моль; -393,8 кДж/моль; -74,9 кДж/моль. Напишите уравнение реакции.

 

Задача 6.

Вычислите изменение стандартной энергии Гиббса и определите возможность протекания при стандартных условиях следующей реакции:

Fe2O3(т) + 3H2(г) ® 2Fe(т) + H2О(г);

Определите условия, при которых указанную реакцию можно осуществить, если известна энтропия и энтальпия образования веществ, участвующих в реакции:

 

  Fe2O3(т) H2(г) Fe(т) H2О(г)
обр, кДж/моль - 822,7 - 241,8
Sобр, Дж/(моль×К) 87,5 130,7 27,2

 

Задача 7.

Можно ли получить силикат натрия Na2SiO3 при стандартных условиях в ходе следующей реакции:

SiO2(т) + 2NaOH(р) ® Na2SiO3(р) + H2О(ж)?

Стандартные энергии Гиббса SiO2(т), NaOH(р), Na2SiO3(р), H2О(ж) равны

соответственно – 804 кДж/моль, – 420 кДж/моль, – 1428 кДж/моль, – 238 кДж/моль.

 

Задача 8.

Вычислите скорость реакции A+2B®С в момент, когда прореагировала половина вещества В. Начальные концентрации веществ А и В равны соответственно 3 моль/л и 4 моль/л. Константа скорости равна 0,5.

 

Задача 9.

На сколько нужно повысить температуру, чтобы скорость реакции возросла в 50 раз? Температурный коэффициент скорости реакции равен 2.

 

Задача 10.

Две реакции протекают при 25 °С с одинаковой скоростью. Температурный коэффициент скорости первой реакции равен 2,0; второй – 2,5. Найдите отношение скоростей этих реакций при 95 °С.

 

Задача 11.

Некоторая реакция протекает при 50 °С за 22,2 секунды, а при 10 °С – за 30 минут. Определите температурный коэффициент скорости реакции. За какое время эта реакция закончится при 30 °С?

 

Задача 12.

Во сколько раз увеличится скорость реакции, протекающей при 25 °С, если энергию ее активации уменьшить на 4 кДж/моль?

 

Задача 13.

Скорость реакции при 40 °С вдвое выше, чем при 30 °С. Вычислите энергию активации.

 

Задача 14.

При состоянии равновесия в системе N2(г)+3H2(г)«2NH3(г) концентрации участвующих веществ равны: [N2]=3 моль/л; [H2]=9 моль/л; [NH3]=4 моль/л. Определите исходные концентрации N2 и H2. Найдите константу равновесия реакции.

 

Тема № 11.

Законы Кеплера. Сила всемирного тяготения.

 

Знать:

- законы Кеплера;

- закон всемирного тяготения.

 

Задача 1.

Найдите период обращения Юпитера вокруг Солнца, если известно, что большая полуось его орбиты в 5,2 раза больше, чем у Земли.

 

Задача 2.

Считая, что Луна движется по круговой орбите, определите линейную скорость обращения Луны вокруг Земли. Масса Земли равна 5,98×1024 кг, расстояние от Земли до Луны 3,84×108 м.

 

Задача 3. (для разбора в УМП)

Две нейтронные звезды обращаются вокруг общего центра масс по круговой орбите с периодом 7 часов. Найдите расстояние между звездами, если их массы одинаковы и в 1,4 раза больше массы Солнца ( кг).

 

Задача 4.

Используя закон всемирного тяготения, и, полагая, что планеты движутся по круговым орбитам вокруг Солнца, получите третий закон Кеплера.

 

Задача 5.

Спутник Юпитера Каллисто имеет период орбитального движения примерно 16 суток, такой же, как и спутник Сатурна Титан. У какой из планет спутник находится на большем расстоянии и почему? Масса Юпитера в 318 раз больше массы Земли, а масса Сатурна в 95 раз превышает массу Земли.

 

Задача 6.

В конце 20 века человечество узнало о второй планетной системе (помимо Солнечной), находящейся в созвездии Девы (1000 св. лет). В роли центрального тела выступает нейтронная звезда (пульсар), вокруг которой обращаются три спутника (планеты). Среднее расстояние от внешнего спутника до пульсара равно 0,47 а. е., период обращения – 95 суток. Определите по этим данным массу пульсара, выразив ее в солнечных массах. Для простоты можно считать, что планеты движутся по круговым орбитам вокруг пульсара.

 

Задача 7.

Определите ускорение свободного падения на поверхности Земли по следующим данным: средний радиус Земли 6378 км, средняя плотность Земли 5,4 г/см3, гравитационная постоянная 6,7×10¾11 Н×м2/кг2.

 

Задача 8.

Искусственный спутник Земли вращается по эллиптической орбите с эксцентриситетом 0,5. Определите, во сколько раз скорость спутника в перигее больше, чем в апогее.

 

Задача 9.

Орбита кометы Галлея – сильно вытянутый эллипс. Период обращения кометы 76 лет, а наибольшую скорость она имеет на расстоянии 0,6 а. е. от Солнца. На каком расстоянии от Солнца скорость кометы минимальна?

 

Задача 10. (для разбора в УМП)

В 1993 году межпланетный аппарат «Галилео», пролетая мимо астероида Ида, обнаружил у него малый спутник, получивший название Дактиль. Спутник обращается вокруг Иды на расстоянии около 100 км. Найдите ускорение свободного падения на поверхности Дактиля, считая, что его плотность равна 2 г/см3.

 

Задача 11.

Какую скорость надо сообщить космическому кораблю, стартующему с поверхности Земли, чтобы он смог преодолеть земное тяготение? Радиус Земли 6378 км ускорение свободного падения 9,8 м/с2.

 

Задача 12.

Найдите значения второй космической скорости для а) Луны ( кг, R=1738 км); б) Солнца ( кг, R=6,96×108 м).

 

Тема № 12.

Эффект Доплера в астрономии. Закон Хаббла.

 

Знать:

- закон Хаббла;

- суть эффекта Доплера;

- названия различных диапазонов электромагнитных волн;

- границы видимого спектра электромагнитных волн;

- что такое «красное» и «фиолетовое» смещение, первая и вторая космические скорости, гравитационный радиус тела, критическая плотность.

 

Задача 1.

При годичном движении Земли линии в спектрах звезд, к которым в данный момент направлено движение планеты, смещены в фиолетовую сторону. Определите скорость движения Земли, если для зеленой линии lз=500 нм смещение составляет 0,05 нм.

 

Задача 2. (для разбора в УМП)

Период пульсара в Крабовидной туманности составляет 0,0334 с. В каких пределах и с какой периодичностью будет изменяться значение этого периода, измеренное на Земле? Когда оно будет достигать максимума и минимума? Скорость орбитального движения Земли составляет 30 км/с.

 

Задача 3.

Для определения периода вращения Солнца вокруг оси измерили относительный сдвиг Dl/l0 спектральных линий восточного и западного краев Солнца. Он оказался равным 1,36×10 ¾ 5. Определите период вращения Солнца, если его радиус равен 6,96×108 м.

 

Задача 4.

Эффект Доплера позволил открыть столь удаленные двойные звезды, что разрешение их с помощью телескопа оказалось невозможным. Спектральные линии таких звезд становятся периодически двойными, из чего можно предположить, что источником света являются две звезды, обращающиеся вокруг их центра масс. Считая массы обеих звезд одинаковыми, найдите расстояние между ними и их массы, если максимальное расщепление спектральных линий равно Dl/l0 =1,2×10 ¾ 4, причем оно возникает через каждые 30 дней.

 

Задача 5.

Относительное красное смещение для одной из галактик составляет 0,001. Определите смещение Dl для голубой линии в спектре водорода (l0=486,1 нм). Какова скорость движения галактики по лучу зрения? Каково расстояние до излучающего источника? Постоянную Хаббла примите равной 75 км/с×Мпк.

 

Задача 6.

В спектральных линиях, излучаемых астрономическими объектами – квазарами, наблюдалось красное смещение, отвечающее трехкратному уменьшению частоты. Определите, с какой скоростью должен удаляться квазар.

 

Задача 7.

Предельное расстояние, до которого могут «дотянуться» наблюдения, называется хаббловским радиусом; в настоящее время оно составляет около 4000 Мпк. Никакое совершенствование техники не позволит заглянуть еще дальше. Какой скорости удаления соответствует это расстояние? Постоянную Хаббла примите равной 75 км/с×Мпк.

 

Задача 8.

Сколько времени потребуется лучу света, чтобы пересечь по диаметру галактику, которая удаляется от нас со скоростью 1000 км/с и видна под углом 1¢? Постоянную Хаббла примите равной 75 км/с×Мпк.

 

Задача 9. (для разбора в УМП)

Найдите линейный размер галактики, если известно, что длины волн всех спектральных линий в спектре галактики смещены из-за эффекта Доплера на Dl/l0=0,1. Угловой размер галактики составляет 1¢. Постоянную Хаббла примите равной 75 км/с×Мпк.

 

Задача 10.

Найдите значения гравитационного радиуса для а) Земли ( кг); б) Солнца ( кг).

 

Задача 11.

Определите среднюю критическую плотность вещества во Вселенной. Постоянную Хаббла примите равной 75 км/с×Мпк.

 

Задача 12.

Определите среднюю концентрацию протонов во Вселенной, если средняя плотность вещества во Вселенной равна 10─30 г/см3. Масса протона 1,672×10¾27 кг.

 

Тема № 13.

Определение расстояний в астрономии.

 

Знать:

- правило Тициуса-Боде;

- что такое видимая звездная величина и абсолютная звездная величина.

- связь видимой звездной величины с абсолютной звездной величиной и расстоянием до объекта;

- что такое параллакс, суточный параллакс, годичный параллакс; разрешающая способность оптического прибора;

- основные единицы измерения расстояний в астрономии (парсек, астрономическая единица и световой год).

 

Задача 1.

В XVIII веке была подмечена закономерность в расположении планет – правило Тициуса-Боде. Вычислите по этому правилу среднее расстояние от Солнца до Юпитера.

 

Задача 2.

Найдите в угловых секундах суточный параллакс Солнца, если радиус Земли R=6378 км, а среднее расстояние от Земли до Солнца составляет 149, 6 млн. км.

 

Задача 3.

Используя результаты предыдущей задачи, определите, на каком расстоянии от Земли находится Юпитер, когда его суточный параллакс равен 1,5². Ответ выразите в астрономических единицах.

 

Задача 4.

Определите линейный радиус Марса, если известно, что во время великого противостояния его угловой радиус составляет 12,5², а суточный параллакс равен 23,4². Радиус Земли R=6378 км.

 

Задача 5.

Разрешающая способность человеческого глаза составляет 2¢. Объекты какого размера различает космонавт на поверхности Земли с космического корабля, летящего на высоте 240 км?

 

Задача 6.

Чему равно расстояние в 1 пк, если его выразить а) в километрах? б) в световых годах? в) в астрономических единицах?

 

Задача 7.

Расстояние до ближайшей (если не считать Солнце) к Земле звезды – Проксимы Центавра составляет 4,2 светового года. Определите годичный параллакс этой звезды.

 

Задача 8.

В 1054 году в нашей Галактике вспыхнула сверхновая. В настоящее время на этом месте наблюдается Крабовидная туманность. Измерение лучевых скоростей газа в туманности показало, что она расширяется со скоростью около 1200 км/с от центра. Угловой диаметр туманности около 5¢. Определите расстояние до Крабовидной туманности.

 

Задача 9.

Во сколько раз планета, имеющая видимую звездную величину m = - 3, ярче звезды, у которой звездная величина m= +2?

 

Задача 10.

Для наблюдателя на Земле звезда имеет блеск 4m. Каков ее блеск с расстояния вдвое меньшего?

 

Задача 11.

Параллакс Веги равен 0,12¢¢, а звездная величина – 0m. На каком расстоянии от Солнца на прямой Солнце – Вега по направлению к Веге должен находиться наблюдатель, чтобы эти две звезды были одинаково яркими? Видимая звездная величина Солнца равна –26,8m.

 

Задача 12.

Фотографические абсолютные звездные величины цефеид с периодом свыше 40 дней достигают –7 звездной величины. Определить расстояние до цефеиды, если она наблюдается как звезда с видимой звездной величиной +18. Принадлежит ли она нашей галактике?

 

Тема № 14.

Характеристики звезд и планет.

 

Знать:

- основные этапы эволюции звезд;

- что такое число Вольфа, светимость звезды, альбедо планеты.

 

Задача 1.

Определите число Вольфа на этой фотографии Солнца.

 

Задача 2а.

Определите число Вольфа на этой фотографии Солнца.

 

Задача 3 (2б).

Оцените высоту фотосферы Солнца, считая вещество фотосферы (в основном это нейтральный атомарный водород) идеальным газом. Ускорение свободного падения на Солнце равно 274 м/с2, температура фотосферы 5800 К.

 

Задача 4.

В конце своей эволюции Солнце начнет расширяться и превратится в красный гигант. В результате температура поверхности понизится вдвое, а светимость повысится в 400 раз. При таких условиях поглотит ли Солнце какие-либо из планет? Средние расстояния от Солнца до планет определите, используя правило Тициуса-Боде.

 

Задача 5. (для разбора в УМП)

Во сколько раз Арктур больше Солнца, если его светимость в сто раз больше солнечной, а температура поверхности равна 4500 К? Температура солнечной поверхности равна 5800 К.

 

Задача 6.

Белый карлик имеет массу 0,6MC (MC – масса Солнца), светимость 0,001LC (LC – светимость Солнца) и температуру 2TC (TC– температура солнечной поверхности). Во сколько раз его средняя плотность больше солнечной?

 

Задача 7.

Какова должна быть скорость вещества, чтобы оно смогло покинуть белый карлик, масса которого равна массе Солнца ( кг), а радиус составляет 20 тысяч км.

 

Задача 8.

Во сколько раз красный гигант больше красного карлика, если их светимости отличаются в 100 млн. раз?

 

Задача 9.

Пульсар NP 0531 – знаменитый пульсар в Крабовидной туманности – имеет период 0,033 с. Оцените его плотность.

 

Задача 10.

В центре активной галактики М87, находящейся на расстоянии 14,7 Мпк, обнаружен компактный газовый диск с угловым радиусом 0,2¢¢, вращающийся с огромной скоростью 600 км/с. Оцените массу черной дыры, по-видимому, находящейся в центре этого диска и своим притяжением удерживающей его от разрушения. Сравните массу черной дыры с массой Солнца ( кг).

 

Задача 11.

Блеск Юпитера в противостоянии составляет –2,7m, а блеск Урана +5,5m. Найдите отношение альбедо Юпитера и Урана. Радиусы Юпитера и Урана равны соответственно 71,4 и 25,4 тыс. км. Расстояние планет от Солнца определите с помощью правила Тициуса-Боде.

 

Задача 12. (для разбора в УМП)

Видимые угловые диаметры Солнца и Луны примерно одинаковы. Блеск Солнца равен –26,8m. Найдите блеск Луны. Расстояние от Земли до Солнца составляет 149,6 млн. км, радиус Солнца равен 6,95×108 м.

 

Задача 13.

Комета Понса-Брукса имеет период обращения 71 год и проходит в перигелии на расстоянии 0,78 а. е. от Солнца. Во сколько раз сильнее Солнце освещает ее поверхность в перигелии, чем в афелии?

 

Тема № 15

Живые системы. Информационные макромолекулы.

 

Знать:

- что такое мономеры и макромолекулы, аминокислоты и нуклеотиды;

- отличия в строении белков и нуклеиновых кислот;

- названия азотистых оснований нуклеотидов ДНК и РНК;

- назначение и-РНК, т-РНК, р-РНК;

- отличия в строении и-РНК и ДНК;

- правила Э. Чаргафа;

- смысл понятий комплементарность, транскрипция, трансляция, репликация, ген, генетический код, экзоны, интроны, сплайсинг.

- основные свойства генетического кода (триплетность, вырожденность (избыточность), квазиуниверсальность, неперекрываемость);

 

Генетический код

 

  № п/п   Аминокислота   Кодоны (триплеты) нуклеотидов м-РНК
Метионин (Мет) АУГ
Триптофан (Три) УГГ
Цистеин (Цис) УГЦ, УГУ
Аспарагиновая кислота (Асп) ГАЦ, ГАУ
Глутаминовая кислота (Глу) ГАА, ГАГ
Фенилаланин (Фен) УУЦ, УУУ
Гистидин (Гис) ЦАЦ, ЦАУ
Лизин (Лиз) ААА, ААГ
Аспарагин (Асн) ААЦ, ААУ
Глутамин (Глн) ЦАА, ЦАГ
Тирозин (Тир) УАЦ, УАУ
Изолейцин (Иле) АУА, АУЦ, АУУ
Глицин (Гли) ГГА, ГГГ, ГГЦ, ГГУ
Пролин (Про) ЦЦА, ЦЦЦ, ЦЦГ, ЦЦУ
Треонин (Тре) АЦА, АЦЦ, АЦГ, АЦУ
Валин (Вал) ГУА, ГУЦ, ГУГ, ГУУ
Аланин (Ала) ГЦА, ГЦЦ, ГЦГ, ГЦУ
Лейцин (Лей) УУА, УУГ, ЦУА, ЦУЦ, ЦУГ, ЦУУ
Аргинин (Арг) АГА, АГГ, ЦГА, ЦГЦ, ЦГГ, ЦГУ
Серин (Сер) АГЦ, АГУ, УЦА, УЦЦ, УЦГ, УЦУ
    стоп-кодоны: УАА, УАГ, УГА

 

Задача 1.

Изучите таблицу «генетический код». Сколько всего аминокислот используется живыми организмами в процессе синтеза белков? Сколько всего триплетных кодонов можно составить из четырех нуклеотидов? Сколько триплетов используется для кодирования аминокислот? Покажите на примерах, что генетический код является триплетным и вырожденным.

 

Задача 2.

Единичная молекула ДНК в хромосоме бактерии кишечной палочки (молекулярная масса 2,8×109 дальтон (1 дальтон=1,66×10-27 кг)) содержит около 4,5 млн. мононуклеотидных единиц. Определите массу (в кг) и общую длину этой молекулы ДНК in vitro и сравните ее с длиной бактерии (длина примерно 10-6 м).

 

Задача 3.

В соматических (диплоидных) клетках млекопитающих и человека содержание ДНК составляет 6 пг (пико, п – 10-12), число нуклеотидных пар – 5500 млн.; длина каждой мононуклеотидной единицы 3,4 Å. Определите: а) суммарную длину (в м) молекул ДНК в отдельной клетке; б) общую длину (в км) и массу ( в г) всей ДНК новорожденного ребенка (2×1012 клеток). Данные по длине молекул сравните с расстоянием от Земли до Солнца (1,5×1011 м). в) Сколько генов содержится в ДНК отдельной клетки человека, если размер «среднего» гена составляет 500 нуклеотидных пар? Расчет произведите, исходя из допущения, что ДНК содержит только экзоны.

 

Задача 4.

Сравните длину гена с длиной кодируемой им полипептидной цепи, находящейся в a-спиральной конфигурации (т. е. при расстоянии между мономерами в 5,4 Å). Расчет произведите, исходя из допущения, что ген содержит только экзоны.

 

Задача 5.

По приблизительным оценкам, в человеческом организме содержатся десятки тысяч белков, что, однако, составляет лишь минимальную долю от их возможного количества. Оцените приблизительно возможное число белков из 100 аминокислот. Сравните свои данные с числом атомных ядер в наблюдаемой части Вселенной, оцениваемом как 1080.

 

Задача 6.

В молекуле ДНК тимин составляет 16% от общего числа нуклеотидов. Какое количество гуанина (в %) содержится в этой молекуле?

 

Задача 7.

На цепи ДНК с последовательностью нуклеотидов АГТ ЦТГ ТАЦ синтезируется и-РНК. Какая последовательность азотистых оснований будет содержать эта и-РНК?

 

Задача 8.

Участок молекулы ДНК (ген) характеризуется следующей последовательностью нуклеотидов: ТАЦ ААЦ ТТА ГАЦ ЦГГ ААТ ТАГ АГЦ АЦТ.… Определите последовательность аминокислот в белке, кодируемым данным геном.

 

Задача 9.

Механизм генных (точковых) мутаций заключается в выпадениях, вставках или заменах нуклеотидов в цепях ДНК, что может приводить к изменениям первичного (и-РНК) и конечного (белок) продуктов данного гена. Участок цепи ДНК (ген) характеризуется следующей последовательностью нуклеотидов: ТАЦ ААА ТГА ЦАГ ГЦЦТ.… Определите порядок расположения аминокислот в белке, кодируемом данным геном. Как изменится структура белка, если четвертый нуклеотид будет удален из гена?

 

Задача 10.

Согласно правилам Э. Чаргаффа, установленным еще в 1947-1950 г.г., т. е. еще до открытия в 1953 г. Дж. Уотсоном и Ф. Криком двойной спирали ДНК, суммарное число пуриновых оснований (аденин, гуанин) в ДНК равно сумме пиримидиновых оснований (тимин, цитозин), причем количество аденина равно количеству тимина, а количество гуанина – количеству цитозина. Изобразите схематически произвольный фрагмент двухцепочечной молекулы ДНК, включающей разные нуклеотиды. Убедитесь в справедливости правил Э. Чаргаффа, для чего а) определите сумму пуринов (А+Г) и пиримидинов (Т+Ц) и найдите соотношение ; б) определите соотношения и .

 

Тема № 16.

Закономерности наследования признаков.

 

Знать:

- законы Г. Менделя;

- смысл понятий аллель, гамета, генотип, фенотип, доминантность, рецессивность, гомозиготность, гетерозиготность.

 

Задача 1.

Сколько и какие типы гамет образуют следующие генотипы: AABB, AaBBCc, AabbCC, AaBbCc, aaBbCc? Какую численную закономерность можно вывести при анализе количества типов гамет у гетерозигот?

 

Задача 2.

В одном из опытов скрещивались мыши с серой и коричневой шерстью, при этом в первом поколении получались коричневые мыши. Повторное скрещивание между потомками приводило во втором поколении к отношению 3:1 между коричневыми и серыми мышами. Каким будет результат скрещивания мыши из первого поколения с чистокровной серой мышью (каков будет процент мышей с коричневой шерстью)?

 

Задача 3.

Проводились опыты по скрещиванию растений гороха двух чистых линий: растения одной линии имели простые стручки, а другой – членистые. В первом поколении все растения имели простой стручок. Когда потомков первого поколения скрестили между собой, то из 122 растений 92 имели простой стручок, а 30 – членистый. Затем провели анализирующее скрещивание растений с простым стручком из второго поколения с растениями чистой линии, имеющими членистый стручок. Какое получится соотношение фенотипов растений в потомстве этого скрещивания?

 

Задача 4.

У человека каштановый цвет волос доминантен по отношению к светло-русому, карий цвет глаз – по отношению к голубому. Родители отличаются по двум этим признакам, у них четверо детей разных фенотипов. Определите генотипы родителей.

 

Задача 5.

Семена гороха могут быть желтыми и зелеными, гладкими и сморщенными. Гены, определяющие данные признаки, являются независимыми. При скрещивании растений, у одного из которых семена желтые и гладкие, а у другого – зеленые и сморщенные, появились растения с желтыми и гладкими семенами. Каким будет результат скрещивания растения, гетерозиготного по обоим признакам, с растением, имеющим зеленые и сморщенные семена (какую часть потомства составят растения с зелеными и сморщенными семенами)?

 

Задача 6.

Скрестили растения двух чистых линий гороха: у растений одной линии были белые цветки и зеленые стручки, у растений другой – красные цветки и желтые стручки. В первом поколении этого скрещивания все потомки имели красные цветки и зеленые стручки. Затем потомков первого поколения скрестили между собой. Какой будет доля растений с белыми цветками и желтыми стручками в общем числе потомков второго поколения, если известно, что гены окраски цветков и окраски стручков не взаимодействуют и расположены на разных хромосомах.

 

Задача 7.

Существует несколько разных пород кур с белой окраской оперения (будем считать, что порода – это чистая линия). При скрещивании пород белый леггорн и белый плимутрок все потомство первого поколения белого цвета. Но при скрещивании этих гибридов друг с другом во втором поколении появляются цветные птицы. Какое соотношение белых и окрашенных птиц будет наблюдаться, если известно, что окраска этих кур определяется двумя взаимодействующими генами, расположенными на разных хромосомах? Определите тип взаимодействия генов, определяющих окраску кур.

 

Задача 8.

У душистого горошка есть разные чистые линии растений с белыми цветками. Были найдены линии, которые при скрещивании дают все потомство первого поколения с пурпурными цветками. Известно, что окраска цветков душистого горошка определяется двумя взаимодействующими генами, расположенными на разных хромосомах. Определите тип взаимодействия генов, определяющих окраску цветков. Какие растения и в каком соотношении возникнут в потомстве от скрещивания пурпурных растений первого поколения друг с другом?

 

Задача 9.

Проводились опыты по скрещиванию растений ночной красавицы двух чистых линий: имеющей красные цветки и имеющей белые цветки. Все потомки первого поколения имели розовые цветки. Когда потомство первого поколения скрестили между собой, то из 80 растений 21 имело красные цветки, 39 – розовые и 20 – белые. Каково будет соотношение потомства различной окраски при скрещивании растений второго поколения, имеющих розовые цветки, и растений с белыми цветками?

 

Задача 10.

Распространенной формой взаимодействия аллельных генов является множественный аллелизм – следствие неоднократных мутаций исходного (предкового) гена. Сокращенная (неполная) серия аллелей цвета радужной оболочки глаз у человека может быть представлена в следующем виде: А – темно-карие, а1 – карие, а2 – светло-карие, а3 – зеленые, а4 – серые, а5 – голубые. Каждый предыдущий аллель полностью доминирует над всеми последующими. Выпишите все генотипы, возможные для указанных фенотипов (в порядке убывания). Какими должны быть генотипы родителей, чтобы в их семьях были дети со следующим цветом глаз:

а) зеленые, серые, темно-карие;

б) карие, голубые, серые;

в) зеленые, светло-карие, голубые?

 

Задача 11.

Во многих случаях гены из разных пар хромосом (неаллельные) обуславливают развитие одного признака. Широко известным примером является полимерия – однозначное действие неаллельных генов. У человека подобным образом наследуется цвет кожи, обусловленный двумя парами генов, находящимися в негомологичных хромосомах. Если все гены доминантные, то кожа черная (негры), при всех рецессивных – белая (европейцы). При наличии в генотипе трех, двух и одного доминантных генов кожа соответственно темная (темные мулаты), смуглая (мулаты) и светлая (квартероны). Определите число и соотношение фенотипов у детей-потомков дигетерозиготных родителей-мулатов.

 

Задача 12.

Проводили скрещивание двух чистых линий кукурузы: у растений одной линии были гладкие окрашенные семена, а у растений другой – морщинистые неокрашенные. Все потомство первого поколения имело гладкие окрашенные семена. После скрещивания гибридов первого поколения с растениями чистой линии, имеющими морщинистые неокрашенные семена, оказалось, что из 1000 потомков 482 имели гладкие окрашенные семена, 482 – морщинистые неокрашенные, 18 – гладкие неокрашенные, и 18 – морщинистые окрашенные. Рассчитайте, какие потомки и в каком соотношении получатся, если скрестить тех же гибридов первого поколения друг с другом.

 

Задача 13.

Деление человечества по группам крови основывается на наличии или отсутствии белков на оболочках эритроцитов. Общеизвестна трехаллельная система АВО (I – IV группы крови). Люди с нулевой (I) группой – рецессивные гомозиготы, генотипа ОО, т. е. их эритроциты не имеют белков. Лица с группой А (II) имеют белок типа А, фенотип А… при генотипах АА либо АО, люди с группой В (III) имеют белок типа В, фенотип В… при генотипах ВВ либо ВО. Люди с группой АВ (IV) имеют оба белка и всегда гетерозиготны. Представьте все возможные ситуации, чтобы дети не походили по группам крови на обоих родителей. Какими могут быть группы крови у детей, если фенотипы их матери и отца А… и В… соответственно.

 

Задача 14.

Мужчина, имеющий вторую группу крови, женился на женщине с третьей группой крови. Отец мужчины имел вторую группу крови, мать мужчины – первую. У женщины отец и мать имели третью группу крови, причем оба раньше состояли в браках с лицами первой группы крови, а все дети от предыдущих браков имели третью группу крови. Какое соотношение групп крови можно ожидать у детей от этого брака?

 

Тема № 17.

Наследование сцепленных с полом признаков.

 

Задача 1.

Дальтонизм (цветовая слепота) наследуется как рецессивный, сцепленный с полом признак. Гетерозиготная женщина с нормальным цветовосприятием вышла замуж за мужчину такого же фенотипа. От этого брака родилось восемь детей, в том числе четыре мальчика. Определите, сколько детей имело нормальное зрение.

 

Задача 2.

Так называемая классическая гемофилия (несвертываемость крови) обусловлена резким снижением содержания антигемофильного глобулина и наследуется как рецессивный, сцепленный с полом признак. Мужчина, больной гемофилией, женился на женщине, в родословной которой эта аномалия не встречалась. У них родились дочери и сыновья с нормальной свертываемостью крови, которые вступили в брак с нестрадающими гемофилией лицами. Обнаружится ли у внуков гемофилия и какова вероятность появления больных в семьях дочерей и сыновей?

 

Задача 3.

Гемофилия и дальтонизм наследуются как рецессивные признаки, сцепленные с полом. Женщина с аномальным цветовосприятием, не имевшая предков с несвертываемостью крови, вышла замуж за мужчину-гемофилика, в родословной которого не было больных дальтонизмом. Определите возможные фенотипы детей в этой семье.

 

Задача 4.

Ангидрозная эктодермальная дисплазия (отсутствие потоотделения и части зубов, скудное оволосение, нарушение терморегуляции) наследуется как рецессивный, сцепленный с полом признак. Фенотипически нормальная женщина вышла замуж за мужчину с этой аномалией, у них родились больная дочь и здоровый сын. Определите генотипы родителей и все генотипы и фенотипы детей, возможные в этой семье.

 

Задача 5.

Гипертрихоз (вырастание волос на краю ушной раковины) – один из немногочисленных признаков, наследующихся через y-хромосому, который проявляется лишь к 17 годам жизни (X-хромосома лишена подобного гена). Какими могут быть генотипы и фенотипы детей в семье, где отец имел гипертрихоз?

 

Задача 6.

Гипоплазия эмали зубов (резкое истончение эмали, сопровождающееся потемнением зубов) наследуется как сцепленный с полом признак. В семье, где этот дефект проявлялся лишь у отца, родилось шесть детей, причем все три дочери унаследовали гипоплазию, все три сына были нормальными. Определите доминирование и генотипы всех членов этой семьи.

 

Задача 7.

Пигментный ретинит (прогрессирующее сужение поля зрения, приводящее к полной слепоте) может наследоваться тремя путями: как аутосомный доминантный признак, как аутосомный рецессивный признак и как рецессив, сцепленный с X-хромосомой. Определите возможные генотипы и фенотипы детей в семье, где мать больна и гетерозиготна по всем трем парам генов, отец здоров, причем в его генотипе нет аномальных аллелей.

 

Тема № 18.

Генетика популяций.

 

Знать:

- закон Харди-Вайнберга;

 

Задача 1.

Альбинизм общий (молочно-белая окраска кожи, отсутствие пигмента в волосяных луковицах и эпителия сетчатки) наследуется как рецессивный аутосомный признак и встречается с частотой 1:20000. Определите число гетерозигот (в %). У скольких процентов людей ген альбинизма отсутствует?

 

Задача 2.

Глухонемота связана с врожденной глухотой, препятствующей нормальному усвоению речи. Наследование аутосомно-рецессивное. Средняя частота аномалии для европейских стран равна 2:10000. Определите возможное число гетерозиготных лиц в районе, где проживает 8 млн. людей.

 

Задача 3.

Среди населения земного системы крови ABO распространены неравномерно. Так, например, у североамериканских индейцев не выявлен антиген B, т.е. не встречаются III и IV группы крови. Число лиц с первой группой (ОО) в разных племенах составляет (в %): юта – 97,4; навахо – 77,7; черноногие – 23,5. Определите генетическую структуру указанных популяций.


Дата добавления: 2015-09-15; просмотров: 37; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2020 год. (0.065 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты