Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Задачи на тему “Прямая на плоскости”.

Читайте также:
  1. D) Задачи воспитания в пубертетном возрасте. Кристоф Вихерт
  2. I Цели и задачи изучения дисциплины
  3. I. Задачи настоящей работы
  4. I. Ознакомление с условием задачи и его анализ
  5. I. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ
  6. I. Цели и задачи проекта
  7. II. ЗАДАЧИ РЕЛИГИОЗНОГО ВОСПИТАНИЯ В СЕМЬЕ
  8. II. Основные цели и задачи Программы, срок и этапы ее реализации, целевые индикаторы и показатели
  9. II. Основные цели, задачи и сроки реализации Программы
  10. II. Упражнения и задачи

IДаны точки A(-1 2), B(0 –2), C(2 4).

Найти:1) уравнение прямой AB

2) уравнение прямой L1, проходящей через точку С, параллельно прямой AB;

3) уравнение прямой L2, проходящей через точку С, перпендикулярно прямой AB;

4) уравнение медианы AD треугольника ABC;

5) уравнение высоты BH;

6) длину высоты BH.

1) На прямой АВ произвольным образом возьмем текущую точку М(x,y) и соединим ее с какой-нибудь известной точкой на этой прямой, например точкой А. Составим текущий вектор {x+1 y-2}.

Вектор {1 -4} расположен параллельно текущему вектору . Следовательно, из условия параллельности, соответствующие координаты этих двух векторов должны быть пропорциональны. Таким образом, получаем уравнение прямой АВ:

, или 4x+y+2=0.

2) На прямой L1 образуем текущий вектор {x-2 y-4}.

Так как II , {1 -4}, то в силу условия параллельности векторов, получим уравнение прямой L1:

; или 4x+y-12=0.

3) На прямой L2 образуем текущий вектор {x-2 y-4}.

Так как , {1 -4}, то в силу условия перпендикулярности двух векторов, =0, получим уравнение прямой L2:

1(x-2)-4(y-4)=0, или x-4y+14=0.

4) На медиане AD образуем текущий вектор {x+1 y-2}.

Найдем координаты точки D- середины стороны ВС:

XD= =1, YD= =1, D=(1 1).

Образуем вектор {2 -1}, расположенный параллельно текущему вектору . Тогда, в силу условия параллельности векторов, получим уравнение медианы AD:

, или x+2y-3=0.

5) На высоте ВН возьмем текущую точку М(x y) и образуем текущий вектор {x-0 y+2}.

Так как , где {3 2}, то условие перпендикулярности этих векторов порождает уравнение прямой ВН:

3(x-0)+(y+2)=0, или 3x+2y+4=0.

6) Заметим, что длина высоты ВН равна расстоянию от точки В до прямой АС. Чтобы воспользоваться соответствующей формулой расстояния, сначала найдем уравнение прямой АС:

На стороне АС образуем текущий вектор {x+1 y-2}.

Так как II , где {3 2}, то уравнение стороны АС:

, или в общем виде 2x-3y+8=0.

Теперь, подставляя известные данные в формулу расстояния от точки до прямой, имеем:

d= .

Дана прямая L1: x-2y-3=0 и точка А(-1 2).

Найти:

1) для прямой L1 уравнение с угловым коэффициентом, угловой коэффициент k, отрезок, отсекаемый по оси ординат;



2) нормаль и направляющий вектор прямой L1;

3) каноническое уравнение прямой L1;

4) уравнение прямой L2, параллельной L1 и проходящей через точку А;

5) уравнение прямой L2, перпендикулярной L1 и проходящей через точку А;

1) Разрешив уравнение прямой относительно Y , получаем уравнение с угловым коэффициентом:

L1: y=0,5x-1,5. Отсюда k=0,5, b=-1,5.

2) Коэффициенты при переменных X,Y, в общем уравнении прямой L1, есть координаты нормального вектора, то есть {1 -2}.

 

Поскольку направляющий вектор {l m} прямой L1. –это любой ненулевой вектор, параллельный этой прямой, то выполняется условие:

=0, где l2+m2 0.

Дадим величине m какое-нибудь значение. Пусть, например, m =1, тогда

l -2=0, то есть l =2. Получаем направляющий вектор {2 1}.

3) Для составления канонического уравнения прямой L1 нам необходимо знать точку М0, лежащую на L1, и направляющий вектор . Так как координаты вектора ={2 1} были получены нами ранее в задаче 2), осталось найти координаты точки М0.

Зафиксируем произвольное значение, например, y=0 и подставим его в уравнение прямой L1. Получим x=3. Следовательно, М0(3 0). Воспользовавшись теперь каноническим уравнением прямой, находим:



.

4) Прежде всего заметим, что точка А не лежит на прямой L1, поскольку ее координаты не удовлетворяют уравнению этой прямой. Поэтому можно построить прямую L2, проходящую через А параллельно L1, но не совпадающую с L1:

Пусть М(x y)- текущая точка прямой L2. Так как текущий вектор {x+1 y-2} перпендикулярен вектору нормали {1 -2} прямой L1, то =0. Отсюда получаем уравнение прямой L2:

1(x+1)-2(y-2)=0 или x - 2y + 5 =0

5) Пусть {x+1 y-2}- текущий вектор прямой L3. Из условия параллельности и нормали {1 -2} прямой L1, получаем уравнение L3:

.

III Проверить, являются ли прямые

L1: 2x+y-4=0, L2:

a) параллельными;

b) перпендикулярными;

c) найти угол между L1 и L2.

a) Прямые L1 и L2 будут параллельны, если их нормали II 2. Из общего уравнения прямой L1 найдем координаты нормали {2 1}. Чтобы найти нормаль 2 приведем уравнение прямой L2 к общему виду: 3x+y+5=0. Отсюда 2={3 1}.

Поскольку условие параллельности векторов и 2 не выполняется, так как , стало быть, L1 и L2 непараллельны.

b) Прямые L1 и L2 будут перпендикулярны, если 2. Но условие перпендикулярности для векторов и 2 не выполняется, так как =7 0. Следовательно, L1 не перпендикулярна L2.

d) Угол между прямыми равен углу между их нормалями. Поэтому, используя формулу угла между двумя векторами, получим

cos =соs( , 2)= .

Так как =7, , , то cos = .

Замечания: 1. Если две прямые L1 и L2 заданы в каноническом виде, то угол между ними можно рассматривать как угол между их направляющими векторами , а значит,

cos =соs( , )= .

2. Если прямые заданы уравнением с угловым коэффициентом, то угол между ними можно вычислить по формуле (1).


Дата добавления: 2015-04-15; просмотров: 15; Нарушение авторских прав


<== предыдущая лекция | следующая лекция ==>
Типы уравнений прямой. | Лекция 2. Линейные образы в R3 .
lektsii.com - Лекции.Ком - 2014-2019 год. (0.013 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты