КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Прямая и плоскость.1) Угол между прямой и плоскостью. Углом между прямой и плоскостью называется угол между прямой и ее проекцией на плоскость. Пусть даны плоскость (a) : Ax+By+Cz+D=0 c нормальным вектором {A,B,C} и прямая с направляющим вектором {m,n,p}. Угол между векторами и отличается от угла между прямой и плоскостью на ; Cos( )= , или sinj= .
2) Условие параллельности прямой и плоскости: Am+Bn+Cp=0. 3) Условие перпендикулярности прямой и плоскости: . Условие того, что прямая лежит в данной плоскости. Пусть Ax+By+Cz+D=0 данная плоскость (a), (1) -параметрические уравнения прямой, проходящей через точку М0(x0,y0, z0), параллельно вектору {m,n,p}. Условие принадлежности прямой (1) плоскости (a) имеет вид: . Если прямая лежит в плоскости, то она этой плоскости параллельна и любая точка прямой удовлетворяет уравнению плоскости.
|