Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Определение 6.




Читайте также:
  1. II 5.3. Определение сухой плотности
  2. II этап. Определение общей потребности в собственных финансовых ресурсах.
  3. III. ОПРЕДЕЛЕНИЕ ЭФФЕКТИВНОСТИ ПРОИЗВОДСТВА
  4. III.4.4 Определение жанрообразующего начала по наименованию жанра
  5. IV. Определение компенсирующего объёма реализации при изменении анализируемого фактора
  6. IV. ОПРЕДЕЛЕНИЕ КРУГА ИСТОЧНИКОВ, СтруктурЫ и объемА курсовой и выпускной квалификационной (дипломной) работы
  7. IV. Экспериментальное определение параметров схемы замещения трансформаторов.
  8. Nbsp;   7 Определение реакций опор для группы Ассура
  9. V 1: Определение и классификация
  10. А) Определение предела прочности при изгибе

Если основная система координат ортогональна при любых значениях , , из области , то криволинейные координаты , , называются ортогональными.

Справедливо следующее утверждение.

Криволинейные координаты ортогональны тогда и только тогда, когда при любых , , из области выполняются условия

, , . (9)

Утверждение очевидно.

Следует отметить, что условия (9) ортогональности криволинейных координат должны выполняться при любых значениях криволинейных координат , , из области . Иначе говоря, равенства (9) должны быть справедливы в любом положении точки . Этот вывод вытекает из определения 6 ортогональных криволинейных координат.

Но данное требование равносильно тому, что соотношения (9) должны выполняться в любой точке , имеющей координаты .

Поэтому при вычислении векторов и по формулам (5) можно заменить в (5) координаты , , точки на координаты , , точки .

Такое действие позволяет исключить индекс «0» в обозначении аргументов , , при вычислении производных от вектор-функции в формулах (6) и требовать от равенств (9), чтобы они выполнялись при любых значениях .

С учетом сказанного условия (9) в скалярной форме примут вид:

, , , при .

К ним следует присоединить условие (2) некомпланарности векторов , , :

,

причем:

– если тройка векторов , , правая, то

, , ,

– если тройка векторов , , левая, то

, , .


Дата добавления: 2015-04-15; просмотров: 9; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты