Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Определение 10.




Читайте также:
  1. II 5.3. Определение сухой плотности
  2. II этап. Определение общей потребности в собственных финансовых ресурсах.
  3. III. ОПРЕДЕЛЕНИЕ ЭФФЕКТИВНОСТИ ПРОИЗВОДСТВА
  4. III.4.4 Определение жанрообразующего начала по наименованию жанра
  5. IV. Определение компенсирующего объёма реализации при изменении анализируемого фактора
  6. IV. ОПРЕДЕЛЕНИЕ КРУГА ИСТОЧНИКОВ, СтруктурЫ и объемА курсовой и выпускной квалификационной (дипломной) работы
  7. IV. Экспериментальное определение параметров схемы замещения трансформаторов.
  8. Nbsp;   7 Определение реакций опор для группы Ассура
  9. V 1: Определение и классификация
  10. А) Определение предела прочности при изгибе

Величина называется обобщенной скоростью точки по координате в момент времени . Величина называется обобщенным ускорением точки по координате в момент времени .

Установим формулу связи скорости и ее контравариантных координат с обобщенными скоростями в произвольный момент времени . Поскольку в векторной форме движение задается формулой

,

то по определению скорости можем записать

= .

С одной стороны, вычисляя производную с учетом того, что функция, стоящая под символом , является суперпозицией вектор-функции от трех переменных , , и заданных функций , , , зависящих от времени , будем иметь

= = . (26)

С другой стороны, вектор можем разложить по базису , , , вычисленному в точке , имеющей значения криволинейных координат = , = , = в заданный момент времени . И тогда придем к следующему выражению для :

. (27)

Согласно определению координат любого вектора, множители при базисных векторах , , в разложении (27) называются контравариантными координатами скорости в аффинной системе, имеющей начало в точке .

Сопоставляя (26) и (27), получаем

= , . (28)

Здесь — коэффициент Ламе по координате , соответствующий моменту времени .

Формула (28) дает связь контравариантных координат скорости с обобщенными скоростями , .

С учетом (27) и (28), находим выражение для квадрата модуля скорости:

. (29)

Установим теперь связь ковариантных координат , , с обобщенными скоростями . Согласно определению ковариантной координаты имеем . Подставляя (27) и (28), находим искомую связь

. (30)

В частности, из (28), (29) и (30) можем сделать следующий вывод.

Если — ортогональный ортонормированный базис при любых значениях , , (т.е. криволинейные координаты , , — ортогональные), то

= , , и = .

В общем случае (когда криволинейные координаты — не ортогональные) ковариантные и контравариантные координаты будут отличаться друг от друга:

¹ , .

Дадим другой способ вычисления координат . Для этого сначала введем в рассмотрение функцию , зависящую от шести независимых переменных, и докажем лемму Лагранжа, устанавливающую связь производных от функции и от функции .

Указанную функцию определим следующей формулой



. (31)

Независимыми переменными в ней будем считать криволинейные координаты , , и обобщенные скорости , , . Следует заметить, что точка, стоящая в обозначениях переменных , , , не означает дифференцирование переменных , , по времени . Это всего лишь символ в данных обозначениях.

В правой части равенства (31) вектор является вектор-функцией , задающей связь (1) криволинейных координат точки с декартовыми.

Функцию будем считать заданной при всех и при любых значениях , , .

Поскольку дважды непрерывно дифференцируема по своим аргументам, то будет непрерывно дифференцируема по переменным , , . Кроме того, она линейна по обобщенным скоростям , , .

Пусть задано произвольное движение точки в криволинейных координатах , . Вычислим значения функции на этом движении, полагая, что переменные , , связаны с обобщенными скоростями в любой момент времени на данном движении равенствами

, .

Для того чтобы вычислить искомое значение функции, необходимо заменить в правой части равенства (31) переменные на , а — на , .

Действительно, согласно определению мгновенной скорости в момент времени , необходимо вычислить движение , а затем взять производную по от него. Так что будем иметь



.

Это выражение будет совпадать со значением функции , задаваемым формулой (31), в котором переменные заменены на , а на для .

В результате получим вектор , совпадающий по значению с вектором , вычисленным по формуле (26).

Поскольку установленное таким образом равенство справедливо на любом движении и в любой момент времени , то можем сделать заключение о том, что формула (31) дает связь обобщенных скоростей точки с ее скоростью в абсолютном пространстве в соответствующем положении

= .

Установим теперь связь производных от функции с производными и от функции . Такая связь дается леммой Лагранжа. Прежде чем формулировать лемму Лагранжа, введем понятие производной от функции вдоль движений точки .

Вычислим производную от функции и обозначим ее . Пусть задано движение точки в криволинейных координатах

, . (32)

Определим значения функции , которые она может принимать на движении (32). Ясно, что эти значения задаются вектор-функцией , которая получается заменой в аргументов на правые части (32).

Вычислим производную по от функции .

. (33)

Функция , стоящая в левой части (33), имеет смысл скорости изменения функции вдоль движения (32). В правой части (33) указывается ее аналитический вид, построенный по правилам дифференцирования по времени функции как сложной функции, в которой аргументы , , задаются движением (32).

Как известно, правило дифференцирования сложной функции предполагает выполнение следующих операций.

1. Вычисление частных производных от функции . В результате получают три функции,



, ,

зависящие от трех переменных .

2. Каждая функция с номером умножается на переменную , и производится суммирование по всех построенных произведений. В результате будет построена функция, зависящая от шести переменных и . Будем записывать эту функцию в операторной форме или, что то же самое, в форме . В явном выражении этот оператор принимает вид:

. (34)

3. В построенной на этапе 2 функции (34) переменные заменяются функциями , а переменные — производными , , где — правые части (32), определяющие заданное движение материальной точки.

Результатом произведенных действий, описанных на этапах 1,2,3, является функция, зависящая только от одной независимой переменной — от времени , которая совпадает с правой частью равенства (33).

Однако обратимся к функции (34), построенной в процессе вычислений на этапе 2.


Дата добавления: 2015-04-15; просмотров: 7; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты