Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Определение 11.




Читайте также:
  1. II 5.3. Определение сухой плотности
  2. II этап. Определение общей потребности в собственных финансовых ресурсах.
  3. III. ОПРЕДЕЛЕНИЕ ЭФФЕКТИВНОСТИ ПРОИЗВОДСТВА
  4. III.4.4 Определение жанрообразующего начала по наименованию жанра
  5. IV. Определение компенсирующего объёма реализации при изменении анализируемого фактора
  6. IV. ОПРЕДЕЛЕНИЕ КРУГА ИСТОЧНИКОВ, СтруктурЫ и объемА курсовой и выпускной квалификационной (дипломной) работы
  7. IV. Экспериментальное определение параметров схемы замещения трансформаторов.
  8. Nbsp;   7 Определение реакций опор для группы Ассура
  9. V 1: Определение и классификация
  10. А) Определение предела прочности при изгибе

Функция, определяемая правой частью (34), называется производной от функции вдоль движений механической системы и обозначается .

В отличие от функции (33), функция (34) зависит от шести переменных и . Из ее построения следует, что подстановкой в нее вместо любого фиксированного движения материальной точки, заданного в криволинейных координатах, и подстановкой в нее вместо — обобщенных скоростей на данном фиксированном движении, будет определена скорость изменения функции вдоль этого движения. Иначе говоря, зная функцию (34), можно определить скорость изменения функции на любом заданном движении, а не только на движении (32). Поэтому функция (34) играет в дальнейшем важную роль.

Отметим, что функция, стоящая в правой части равенства (34), получена на основе действий, описанных в первых двух этапах вычисления производной по времени от функции . В таких случаях говорят, что «она получена дифференцированием функции вдоль движений (на движениях) материальной точки». Применительно к ее обозначению , записанному в левой части (34), также говорят, что «в левой части равенства (34) дифференцирование функции по времени производится вдоль движений материальной точки». В указанных случаях результат дифференцирования, т.е. правая часть равенства (34), задающая явный вид построенной функции, как правило, не приводится.

Докажем теперь следующую лемму Лагранжа.


Дата добавления: 2015-04-15; просмотров: 5; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты