Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Задание 481 – 491.




Представить где в виде ; проверить, является ли она аналитической. Если да, то найти значение её производной в заданной точке

Здесь мы воспользовались формулой Эйлера

Необходимыми условиями дифференцируемости функции в точке являются условия Коши – Римана

Находим частные производные

Т.е. условия Коши – Римана выполнены во всех точках комплексной плоскости. Кроме того, частные производные непрерывны всюду. Следовательно, заданная функция дифференцируема и является аналитической на всей комплексной плоскости.

Производная может быть найдена по тем же формулам, что для функций действительного переменного.

В заданной точке

Типовые задачи по теме «Производная функции комплексного переменного» рассматривается в учебном пособии П.Е.Данко, А.Г.Попов, Т.М.Кожевникова. Высшая математика в упражнениях и задачах, ч. гл.VII, §§1,2.


Поделиться:

Дата добавления: 2015-04-16; просмотров: 128; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.005 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты