![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
IV. Примеры решения задач. Задача 1. В плоскости yOz дана окружность с центром в точке (0; 4; 0) радиуса 1Задача 1. В плоскости yOz дана окружность с центром в точке (0; 4; 0) радиуса 1. Написать уравнение поверхности, образованной вращением данной окружности вокруг оси Oz.
Уравнения окружности, лежащей в плоскости yOz с центром в точке (0; 4; 0) радиуса 1, имеют вид
При вращении этой окружности вокруг оси Oz получается поверхность, называемая тором. Пусть М – произвольная точка на торе. Проведем через точку М плоскость a, перпендикулярную оси вращения, т.е. оси Oz, в сечении получим окружность. Обозначим центр этой окружности P, а точку пересечения плоскости a с окружностью, образующей поверхность вращения, – N. Обозначим координаты точки M(x, y, z), тогда P(0, 0, z), а N(0,
Последнее равенство запишем в координатах
Точка N лежит на окружности, при вращении которой образуется тор, значит ее координаты должны удовлетворять уравнениям (3), запишем первое уравнение системы (3)
Возведем последнее равенство в квадрат. и подставим выражение для
Уравнение (5) – искомое. Ответ: Задача 2. Составить уравнение цилиндрической поверхности, если направляющая лежит в плоскости xOy и имеет уравнение Решение. Пусть точка M(x, y, z) – произвольная точка цилиндрической поверхности. Проведем через точку М образующую l, она пересекает направляющую в точке
Приравняем первую и вторую дроби к последней
Точка N лежит на направляющей, значит ее координаты удовлетворяют ее уравнению:
Подставляя выражения для
(7) – искомое уравнение. Ответ:
|