Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Непрерывность функции




Читайте также:
  1. Foreign Office – структура, функции…..
  2. III. Вегетативные функции НС.
  3. III. Функции полномочного представителя
  4. SQL-функции
  5. Автоматизированное рабочее место. Его состав, функции, аппаратное и программное обеспечение.
  6. Аналитические свойства степенных рядов (непрерывность, интегрируемость, дифференцируемость)
  7. Анатомия ствола головного мозга (структуры и функции).
  8. Анатомия, гистология, функции наружной оболочки глаза.
  9. Аритмии, обусловленные нарушением функции проводимости
  10. Артерии, морфофункциональная характеристика. Классификация, развитие, строение, функции. Взаимосвязь структуры артерий и гемодинамических условий. Возрастные изменения.

Понятие непрерывности функции интуитивно связано с непрерывностью линии (графика функции). С точки зрения математика это понятие связано с существованием предела функции в точке.


Рис. 17. Рис. 18


. Рис. 19. Рис. 20.

 

На рисунках 17–20 представлены графики различных функций, из которых только одна (рис. 20) является непрерывной в точке х0. Остальные функции не являются непрерывными в точке по разным причинам. На рис. 17 дан график функции, которая имеет в точке х0 различные (хотя и конечные) односторонние пределы. На рис. 18 функция в точке х0 не имеет конечного правого предела. На рис. 19 функция имеет оба равные односторонние пределы, но сама в точке х0 не определена. Таким образом, для непрерывности функции в точке должны быть устранены все эти особенности.

 

Определение.Функция ƒ(х) называется непрерывной в точке х0, если

1) она определена в точке х0 и в некоторой ее окрестности,

2) существует ,

3) предел функции в точке х0 равен значению функции в

этой точке, т. е.

 

Второе условие определения может быть сформулировано более подробно: существуют и равны оба односторонних предела в точке, т. е.

 

 

 

Рассмотрим примеры.

№ 1. .

Эта функция не является непрерывной в точке х=0, т. к. в этой точке она не определена.

 

№ 2. .

Эта функция не является непрерывной в точке х=2, т. к. в этой точке не существует ее предел: .

Заметим, что в точке х=2 тоже не определена.

 

№ 3. Зададим функцию с помощью двух аналитических выражений, а именно

 

 

Посмотрим, является ли эта функция непрерывной в точке х=1. Значение функции в этой точке ƒ(1)=3–1=2. Функция определена для всех действительных чисел.

Вычислим односторонние пределы. При х < 1 ƒ(х)=х, поэтому

 

 

При х > 1 ƒ(х)=3–х, поэтому

 

 

Так как односторонние пределы не равны между собой, то не существует и в точке х=1 функция не может быть непрерывной.

Определение. Функция называется непрерывной на отрезке, если она

непрерывна в каждой точке этого отрезка.

 

Рассматривая простейшие элементарные функции, легко убедится, что каждая из них непрерывна в области своего определения.



Определение.Точка х=х0 называется точкой разрыва функции, если в

этой точке нарушается хотя бы одно требование

непрерывности.

 

На рисунках 17–19 приведены примеры точек разрыва.

Точку называют точкой разрыва первого рода, если существуют и конечны оба односторонних предела.

Точку разрыва называют точкой разрыва второго рода, если хотя бы один односторонний предел в этой точке не существует (или бесконечен).

В рассмотренном примере № 3 функция имеет в точке х=1 точку разрыва первого рода.

График этой функции состоит из двух полупрямых у=х (для х < 1) и у=3–х (для х ³ 1).

Рис. 21.

 

При исследовании функции на непрерывность точку разрыва следует искать там, где функция не определена, или в точках, где одно аналитическое выражение функции меняется на другое.

Укажем некоторые свойства непрерывных функций.

1. Если функции ƒ(х) и φ(х) непрерывны в точке х0, то непрерывны в точке х0 функции ƒ(х)±φ(х), ƒ(х)·φ(х), .

Заметим, что непрерывна в точке х0 только, если φ(х0)¹0.

2. Каждая элементарная функция непрерывна в своей области определения.



3. Непрерывная на отрезке функция принимает на этом отрезке свое наибольшее и свое наименьшее значения.

4. Если функция ƒ(х) непрерывна на отрезке [а, b] и ƒ(а)=А, ƒ(b)=В, то каково бы ни было число С (А < С < В), найдется точка х=с внутри отрезка [а, b] такая, что

 

ƒ(с)=С

 

То есть функция принимает на отрезке все промежуточные значения.

5. Если функция ƒ(х) непрерывна на отрезке [а, b] и принимает на концах его значения разных знаков (ƒ(а)·ƒ(b) < 0), то внутри отрезка найдется точка х=с такая, что ƒ(с)=0. Это свойство позволяет приближенно находить корень уравнения, т. к. если ƒ(с)=0, то с – решение уравнения ƒ(х)=0.


Дата добавления: 2015-01-05; просмотров: 17; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.017 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты