Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Задача № 6.




Читайте также:
  1. IV. Работа над задачами.
  2. IV. Работа над задачами.
  3. IV. Работа над задачами.
  4. IV. Работа над задачами.
  5. IV. Работа над задачами.
  6. V. Работа над задачами.
  7. V. Работа над задачами.
  8. V. Работа над задачами.
  9. V. Работа над задачами.
  10. V. Работа над задачами.

 

Исследовать функцию и построить ее график.

1. Данная функция является многочленом (можно раскрыть скобки, получим многочлен третьей степени), поэтому она определена, непрерывна и дифференцируема при любых х.

2. Найдем производную.

.

Из уравнения у¢=0 найдем критические точки: 3х·(х–2)=0, х1=0, х2=2.

Исследуем их.

х (–∞, 0) (0; 2) (2; +∞)
у¢ + +
у      
  возрастает max убывает min возрастает

3. Итак, функция возрастает на интервалах (–∞, 0) и (2, +∞), убывает на интервале (0; 2), имеет максимум при х=0 и минимум при х=2:

уmax=у(0)=4; уmin=у(2)=0.

4. Найдем вторую производную.

у¢¢=6·(х-1).

Кривая выпукла там, где у¢¢ < 0, т. е. 6·(х–1) < 0, х < 1.

Кривая вогнута там, где у¢¢ > 0, т. е. х > 1.

Итак, на интервале (–∞, 1) кривая выпукла; а на интервале (1, +∞) – вогнута.

5. Точку перегиба найдем из уравнения у¢¢=0. Таким образом, х=1 – абсцисса точки перегиба, т.к. эта точка разделяет интервалы выпуклости и вогнутости кривой. Ордината точки перегиба: у(1)=2.

График функции у=(х+1)·(х–2)2 пересекает ось Ох при у=0, т. е. при х= –1 и х=2;

пересекает ось Оу при х=0, т. е. при у=4. Мы получили три точки: (–1; 0), (2; 0), (0; 4).

Все полученные точки внесем в таблицу, добавив соседние с ними.

х –2 –1
у –16 3
        max перегиб min    


Рис. 28 Кривая у=(х+1)(х–2)2.

 


Дата добавления: 2015-01-05; просмотров: 6; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.016 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты