КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Дифференциальные уравнения первого порядка. Так как дифференциальное уравнение первого порядка (условимся в дальнейшем писать Д.У
Так как дифференциальное уравнение первого порядка (условимся в дальнейшем писать Д.У. — I) содержит независимую переменную х, функцию у и её производную , то общий вид Д.У. – I (1) Если уравнение (1) решить относительно производной то оно может быть записано в виде (2) Так как , то из (2) можно перейти к форме (3) Например, Д.У. (3) можно записать в виде разделив обе части последнего уравнения на . Получим или (2) Наконец, можно получить (1) Таким образом, формы (1), (2), (3) совершенно равноправны, можно пользоваться любой из удобных для решения. Определение. Общим решением дифференциального уравнения первого порядка (Д.У. — I) называется функция которая зависит от одной произвольной постоянной С и 1) удовлетворяет данному Д.У. – I при любом значении С; 2) каково бы ни было начальное условие y(x0)=y0, можно найти такое значение С0, при котором функция удовлетворяет начальному условию. Например, для Д.У. – I общим решением является функция Найдём частное решение, удовлетворяющее начальному условию Для этого подставим в общее решение и х = 0. Получим — уравнение для опредления постоянной Теперь подставим в общее решение. Функция и будет искомым частным решением.
|