КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Исследование формы гиперболы по ее уравнению
Установим форму гиперболы, пользуясь ее каноническим уравнением. 1. Уравнение (11.9) содержит х и у только в четных степенях. Следовательно, гипербола симметрична относительно осей Ох и Оу, а также относительно точки , которую называют центром гиперболы. 2. Найдем точки пересечения гиперболы с осями координат. Положив у = 0 в уравнении (11.9), находим две точки пересечения гиперболы с осью Ох: и . Положив х = 0 в (11.9), получаем , чего быть не может. Следовательно гипербола ось Оу не пересекает. Точки и называются вершинами гиперболы, а отрезок – действительной осью, отрезок – действительной полуосью гиперболы. Отрезок , соединяющий точки и называется мнимой осью, число – мнимой полуосью. Прямоугольник со сторонами и называется основным прямоугольником гиперболы. 3. Из уравнения (11.9) следует, что уменьшаемое не меньше единицы, т.е. что или . Это означает, что точки гиперболы расположены справа от прямой (правая ветвь гиперболы) и слева от прямой (левая ветвь гиперболы).
4 Из уравнения (11.9) гиперболы видно, что когда возрастает, то и возрастает. Это следует из того, что разность сохраняет постоянное значение, равное единице. Из сказанного следует, что гипербола имеет форму, изображенную на рисунке 54 (кривая, состоящая из двух неограниченных ветвей).
|