КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Дополнительные сведения о гиперболе
Эксцентриситетом гиперболы (11.9) называется отношение расстояния между фокусами к величине действительной оси гиперболы, обозначается ε:
Так как для гиперболы , то эксцентриситет гиперболы больше единицы: . Эксцентриситет характеризует форму гиперболы. Действительно, из равенства (11.10) следует, что , т.е. и Отсюда видно, что чем меньше эксцентриситет гиперболы, тем меньше отношение ее полуосей, а значит, тем более вытянут ее основной прямоугольник. Эксцентриситет равносторонней гиперболы равен . Действительно, Фокальные радиусы и для точек правой ветки гиперболы имеют вид и , а для левой – и . Прямые называются директрисами гиперболы. Так как для гиперболы , то . Это значит, что правая директриса расположена между центром и правой вершиной гиперболы, левая – между центром и левой вершиной. Директрисы гиперболы имеют то же свойство , что и директрисы эллипса. Кривая, определяемая уравнением , так же есть гипербола, действительная ось которой расположена но оси , а мнимая ось – на оси . На рисунке 59 она изображена пунктиром.
Очевидно, что гиперболы и имеют общие асимптоты. Такие гиперболы называются сопряженными.
|