КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Асимптоты гиперболыПрямая L называется асимптотой неограниченной кривой K, если расстояние d от точки M кривой до этой прямой стремится к нулю при неограниченном удалении точки M
вдоль кривой K от начала координат. На рисунке 55 приведена иллюстрация понятия асимптоты: прямая L является асимптотой для кривой K. Покажем, что гипербола имеет две асимптоты:
(11.11)
Так как прямые (11.11) и гипербола (11.9) симметричны относительно координатных осей, то достаточно рассмотреть те точки указанных линий, которые расположены в первой четверти. Возьмем на прямой точку N, имеющий абсциссу х, что и точка на
гиперболе (см. рис. 56), и найдем разность MN между ординатами прямой и ветви гиперболы:
.
Как видно, по мере возрастания х знаменатель дроби увеличивается; числитель есть постоянная величина. Стало быть, длина отрезка MN стремится к нулю. Так как MN больше расстояния d от точки M до прямой, то d и подавно стремится к нулю. Итак, прямые являются асимптотами гиперболы (11.9). При построении гиперболы (11.9) целесообразно сначала построить основной прямоугольник гиперболы (см. рис. 57), провести прямые, проходящие через противоположные вершины этого прямоугольника, – асимптоты гиперболы и отметить вершины и гиперболы.
|