Студопедия

КАТЕГОРИИ:

АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника


Построение ортонормированного базиса




Как было показано, любые два сигнала с ограниченным спектром, принадлежащие семейству являются ортогональными.

(5.9)

Путем соответствующего выбора амплитудного множителя можно добиться того, чтобы норма каждого из этих сигналов стала единичной. В результате будет построен ортонормированный базис, позволяющий разложить произвольный сигнал с ограниченным спектром в обобщенный ряд Фурье.

Достаточно рассмотреть лишь функцию

(5.10)

так как норма любого сигнала одинакова независимо от сдвига во времени.

Поскольку

(5.11)

Функции будут ортонормированными, если

(5.12)

базис Котельникова

Бесконечная совокупность функций

(5.13)

образует базис Котельникова в линейном пространстве низкочастотных сигналов со спектрами, ограниченными сверху значением Отдельная функция называется к-й отсчетной функцией.


Поделиться:

Дата добавления: 2015-08-05; просмотров: 118; Мы поможем в написании вашей работы!; Нарушение авторских прав





lektsii.com - Лекции.Ком - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты