![]() КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Первый замечательный пределРассмотрим следующий предел: Согласно нашему правилу нахождения пределов (см. статью Пределы. Примеры решений) пробуем подставить ноль в функцию: в числителе у нас получается ноль (синус нуля равен нулю), в знаменателе, очевидно, тоже ноль. Таким образом, мы сталкиваемся с неопределенностью вида Данный математический факт носит название Первого замечательного предела. Аналитическое доказательство предела приводить не буду, а вот его геометрический смысл рассмотрим на уроке о бесконечно малых функциях. Нередко в практических заданиях функции могут быть расположены по-другому, это ничего не меняет:
! Но самостоятельно переставлять числитель и знаменатель нельзя! Если дан предел в виде На практике в качестве параметра Примеры: Здесь А вот следующая запись – ересь: Почему? Потому-что многочлен Кстати, вопрос на засыпку, а чему равен предел На практике не все так гладко, почти никогда студенту не предложат решить халявный предел Переходим к рассмотрению практических примеров: Пример 1 Найти предел Если мы замечаем в пределе синус, то это нас сразу должно наталкивать на мысль о возможности применения первого замечательного предела. Сначала пробуем подставить 0 в выражение под знак предела (делаем это мысленно или на черновике): Итак, у нас есть неопределенность вида В подобных случаях первый замечательный предел нам нужно организовать самостоятельно, используя искусственный прием. Ход рассуждений может быть таким: «под синусом у нас То есть, знаменатель искусственно умножается в данном случае на 7 и делится на ту же семерку. Теперь запись у нас приняла знакомые очертания.
Готово. Окончательный ответ: Если не хочется использовать пометки карандашом, то решение можно оформить так: “
|