Студопедия

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника



Теорема об изменении кинетической энергии СМТ




Читайте также:
  1. Адиабатный процесс. Уравнение адиабаты идеального газа. Работа идеального газа при адиабатическом изменении его объема.
  2. Альтернативные источники энергии.
  3. Альтернативные способы получения и преобразования энергии.
  4. Альтернативные способы получения электрической энергии.
  5. Анализ структуры потерь электроэнергии
  6. Баланс энергии в лопастном насосе
  7. Виды потерь энергии и их определение
  8. Внутренняя энергия. Термодинамический метод. Выражение для внутренней энергии идеального газа.
  9. Внутриклеточный поток энергии
  10. Вопрос 21 Теорема Коуза и проблема внешних эффектов (экстерналий). Выводы из теоремы. Российская приватизация в свете теоремы Коуза

Используя теорему об изменении кинетической энергии МТ для n-й точки СМТ запишем:

(n=1,…,n),

(n=1,…,n),

(n=1,…,n).

Просуммировав эти соотношения и учитывая, что производная от суммы равна сумме производных, получим:

, (1)

.

Введем понятие кинетической энергии СМТ.

Определение: Кинетической энергией СМТ называется величина, равная сумме кинетических энергий входящих в нее МТ:

, (2)

аналогично

. (3)

Здесь Т и Т0 – соответственно значения кинетической энергии СМТ в текущий и начальный моменты времени.

По определению в соотношениях (1):

,

соответственно суммы элементарных работ всех внешних и внутренних сил, действующих на СМТ;

,

соответственно суммы их мощностей;

,

соответственно суммы работ всех внешних и внутренних сил, действующих на СМТ.

С учетом принятых обозначений, из соотношений (1) получим три формы (две дифференциальных и одну конечную) теоремы об изменении кинетической энергии СМТ.

Теорема: Дифференциал кинетической энергии СМТ равен сумме элементарных работ всех внешних и внутренних сил, действующих на СМТ.

. (4)

Теорема: Производная от кинетической энергии СМТ равна сумме мощностей всех внешних и внутренних сил, действующих на СМТ.

. (5)

Теорема: Изменение кинетической энергии СМТ на ее конечном перемещении из одного положения в другое равно сумме работ приложенных внешних и внутренних сил, на том же перемещении.

. (6)

Рассмотрим сумму элементарных работ всех внутренних сил, действующих на СМТ.

Выделим из СМТ две произвольные МТ Вg и Bn, положение которых относительно неподвижного центра О определяется радиус-векторами . Обозначим через и ( ) силы взаимодействия между этими МТ и определим сумму элементарных работ этих сил (рис):

 

Рис. 37

 

Из полученного соотношения следует, что элементарная работа внутренних сил, с которыми две точки СМТ действуют друг на друга, будет равна нулю только в случае , т. е. когда , что имеет место в случае НМС.

Таким образом, сумма элементарных работ всех внутренних сил НМС всегда равна нулю. Аналогичным образом можно доказать, что суммы мощностей всех внутренних сил НМС и их работ будут равны нулю. Учитывая это, на основании соотношений (4) – (6) для НМС можно записать:



, , .


Дата добавления: 2015-04-21; просмотров: 16; Нарушение авторских прав







lektsii.com - Лекции.Ком - 2014-2021 год. (0.005 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Главная страница Случайная страница Контакты