КАТЕГОРИИ:
АстрономияБиологияГеографияДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРиторикаСоциологияСпортСтроительствоТехнологияФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Гелий неэлектропроводен. 5 страницаЕсли под решением данного спора понимать ответ на вопрос, должен Еватл уплатить Протагору или нет, то очевидно, что спор неразрешим. Договор учителя и ученика внутренне противоречив и требует реализации логически невозможного положения: Еватл должен одновременно и уплатить за обучение, и вместе с тем не платить. Антиномии и подобные им П. являются рассуждениями, итог которых — противоречие. В логике известны и многие другие типы П. Они также указывают на какие-то затруднения и проблемы, но делают это в менее резкой форме. Особый интерес среди них представляют П. неточных, или размытых, имен. В этом случае не ясно, какие именно предметы подпадают под то или иное название, а какие нет (см.: Неточность). Анализ П. способствовал прояснению оснований логики, совершенствованию конкретных ее теорий. Что касается центральных логических антиномий, то в логике найдены достаточно эффективные методы их устранения. Пока не открыто ни одного П., для которого не было бы найдено никакого решения. ПАРАДОКСЫ ИМПЛИКАЦИИ — доказуемые в логике классической и некоторых других логических системах утверждения с импликацией, плохо согласующиеся с обычным пониманием условной связи («если , то ... ») и логического следования. П.и.— это парадоксы в широком смысле, их наличие не свидетельствует о внутренней противоречивости соответствующих логических теорий, но указывает на определенное рассогласование последних с привычными, или интуитивными, представлениями о логических связях. Условные высказывания, формулируемые обычно с помощью союза «если, то», играют важную роль и в повседневных, и в научных рассуждениях. Эти высказывания выполняют много разных задач, но типичная их функция, особенно в науке,— обоснование одних утверждений ссылкой на другие. Напр., ковкость железа можно обосновать, ссылаясь на то, что оно металл: «Если железо металл, оно является ковким». В классической логике условные высказывания представляются с помощью импликации материальной. Она считается ложной только в случае, когда ее основание истинно, а следствие ложно. Она истинна, в частности, когда соединяемые ею высказывания являются ложными («Если Земля — куб, то Марс — треугольник») или основание ее ложно, а следствие истинно («Если Юпитер обитаем, он не является обитаемым»), В обычном условном высказывании его части связаны между собой по содержанию. Материальная импликация не предполагает содержательной, смысловой связи соединяемых ею высказываний. Если даже они не имеют ничего общего друг с другом, составленная из них импликация может быть истинной («Если у собаки есть хвост, то у тритона четыре ноги»). Особенностями материальной импликации обусловлено то, что ею плохо передается основная функция условной связи — функция обоснования. На это и указывают П.и. Поскольку речь идет о такой довольно неопределенной вещи, как «несогласие с интуицией», круг парадоксов материальной импликации четко не ограничен. Но в него всегда включаются парадокс истинного высказывания и парадокс ложного высказывания. Согласно первому истинное высказывание может быть обосновано с помощью любого высказывания. Это соответствует закону логики классической, который передается так: истинное высказывание имплицируется каждым высказыванием. Допустимым будет такое «обоснование»: «Если Наполеон не был сапожником, то «Геометрия» Евклида написана не им». Вряд ли, однако, разумно утверждать, что, поставив перед истинным высказыванием произвольное утверждение, мы обосновали данное высказывание. Если установлено, что какое-то высказывание истинно, то в определенных пределах действительно безразлично, из каких положений оно получено. Но такое допущение классической логики не согласуется с представлениями о научной теории. Она является не механическим набором истинных высказываний, а системой, в которой утверждения находятся в известных отношениях друг с другом и могут обосновываться путем выведения их из вполне определенных утверждений. Едва ли имеет смысл, напр., заключение, что классическая механика Ньютона обосновывается ссылкой на то, что Северный полюс отличается от Южного, а множество арифметических истин — ссылкой на реакции, идущие в недрах Солнца. Согласно парадоксу ложного высказывания (см.: Закон Дунса Скота), ложное высказывание имплицирует любое высказывание. Так, высказывание «Если медь неэлектропроводна, то электрон делим до бесконечности» должно рассматриваться как истинное. Данный парадокс является своеобразным предостережением против принятия ложного высказывания. Введение в научную теорию такого высказывания ведет к разрушительным последствиям: в ней становится возможным обосновать все что угодно, и она теряет всякий смысл. Это предостережение является, несомненно, важным. Но не очевидно, что оно должно включаться в класс правил логического следования, обоснованность которых зависит только от структуры входящих в них высказываний, но не от того, истинны они или ложны. Таким образом, логика классиче-
6 Заказ 526 ская с ее материальной импликацией не может быть признана удачным описанием условной связи, а значит, и логического следования. Впервые на парадоксы материальной импликации обратил внимание американский философ и логик К. И. Льюис (1883—1964). Он предложил взамен классической логики новую теорию логического следования, в которой материальная импликация замещалась другой условной связью — строгой импликацией. Это было большим шагом вперед, хотя и оказалось, что строгая импликация тоже не лишена собственных парадоксов. В их числе аналог парадокса истинного высказывания: логически необходимое высказывание вытекает из любого высказывания; и аналог парадокса ложного высказывания: из логически невозможного высказывания вытекает какое угодно высказывание. Более удовлетворительное описание условной связи и логического следования было дано в 50-е годы В. Аккерманом, А. Андерсоном и Н. Белнапом. Им удалось исключить не только парадоксы материальной импликации, но и парадоксы строгой импликации. Введенная ими непарадоксальная импликация получила название релевантной (т. е. уместной), поскольку ею могли связываться только высказывания, имеющие какое-то общее содержание. ПАРАЛОГИЗМ (от греч. рага1о§1з- тоз — неправильное, ложное рассуждение) — непреднамеренная логическая ошибка, связанная с нарушением законов и правил логики. П. следует отличать от софизма — ошибки, совершаемой намеренно, с целью ввести в заблуждение оппонента, обосновать ложное утверждение и т. п. (см.: Ошибка логическая). ПАРАМЕТР (одно из значений этого термина) — знак в формуле, значение которого может быть различным, но при этом фиксированным, выделенным, не изменяющимся на определенном отрезке рассуждения. Так, в одном из основных газовых законов, согласно которому рри постоянной температуре Т объем V данной массы газа обратно пропорционален его давлению, Т есть параметр: температура может быть любой, но при этом фиксированной (постоянной). В логике знаки в формулах часто выполняют роль П. (см.: Правило Локка). ПАРАНЕПРОТИВОРЕЧИВАЯ ЛОГИКА — логика, не позволяющая выводить из противоречия произвольное предложение. В логике классической некоторая теория называется противоречивой, когда в ней можно доказать одновременно и предложение, и его отрицание. Если при этом в теории можно доказать и произвольное предложение, она называется тривиальной. П.л. трактует противоречие иначе, чем классическая логика. Исключается возможность выводить из противоречий любые предложения, противоречие перестает быть угрозой разрушения теории. Этим не устраняется, конечно, принципиальная необходимость избавляться от противоречий в ходе дальнейшего развития теории. Такой подход к противоречию сложился относительно недавно. В конце 40-х годов польским логиком С. Ясь- ковским (1906—1965) была построена «логика дискуссии», не позволяющая выводить из противоречия произвольные предложения. Более совершенная версия П.л. была предложена позднее бразильским логиком Н. да Костой. Паранепротиворечивой является также релевантная логика, в которой новая трактовка противоречия оказалась естественным следствием решения другой задачи — более адекватной, чем в классической логике, формализации условного высказывания. О новом отношении к противоречию и возможности логики без непротиворечия закона еще в начале этого века говорили рус. логик Н. А. Васильев (1880—1940) и польский логик Я. Лукасевич (1878—1956). ПЕРЕМЕННАЯ — а) П. величина, которая может принимать в процессе своего изменения различные значения; б) неопределенное имя предмета из некоторой области значений этой П., вместо которого могут подставляться имена предметов этой области. П. величина характеризуется тем, что относит к значениям одной (независимой) П. величины значения другой П. величины, зависящей от первой (см.: Функция). С такими П. величинами мы встречаемся в формулах математики (напр., у = х2), физики (/ = т-а) и др. В логике и математике мы встречаемся и с понятием П. в смысле (б). В этих случаях П. играет роль неопределенного (родового) имени, буквы, вместо которых производится соответствующая подстановка. Иногда говорят, что в таких случаях П. есть «пустое место» в формуле, снабженное указанием, какого рода конкретные предметы (точнее — их имена) могут быть подставлены на это пустое место. Так, в выражении (ху)2 = х2 + 2ху -+- -\-у2 П. х и у выполняют роль таких П., вместо которых можно подставлять различные числа. Идея зависимости между П. здесь отсутствует. Аналогично в формуле х>у, выражающей в логике пропозициональную функцию, П. х и у используются в значении (б), а именно как «пустые места». ПЕРЕСЕЧЕНИЕ КЛАССОВ (МНО^ ЖЕСТВ) — логическая операция по нахождению общих для класса (множества) элементов. Так, П.к. студентов (А) и спортсменов (В) будет класс тех студентов, которые одновременно являются спортсменами. Результат может быть представлен в виде двух пересекающихся кругов (см. рис.), где заштрихованная часть будет представлять множество студентов, являющихся одновременно спортсменами (см.: Множеств теория). В логике чаще говорят не о П.к., а о пересечении понятий. При этом имеется в виду операция нахождения общей части объема понятийг. ПОДМЕНА ТЕЗИСА (лат. 1§погайо е1епсЫ) — логическая ошибка в доказательстве, состоящая в том, что, начав доказывать некоторый тезис, постепенно в ходе доказательства переходят к доказательству другого положения, сходного с тезисом. При этом происходит нарушение закона тож
дества по отношению к тезису: тезис на всем протяжении доказательства должен оставаться одним и тем же. Опасность этой ошибки заключается в том, что благодаря сходству доказанного положения с тезисом создается иллюзия о доказанности именно тезиса. Напр., доказывая положение «Н. невиновен», приводят следующие аргументы: «Н.— хороший семьянин», «Н.— передовик производства» и т. п. Из этих аргументов вытекает вывод, что Н.— хороший человек. Но этот вывод не тождествен доказываемому тезису. Налицо подмена. .П.т. часто совершается при опровержении, когда опровержение положения, лишь внешне сходного с тезисом, выдают за опровержение самого тезиса или опровержение одного из аргументов (или демонстрации) рассматривают как опровержение тезиса. Тезис в процессе доказательства можно изменять. Иногда, доказывая некоторое положение, мы осознаем, что оно не совсем верно и нужно доказывать другое положение. В таком случае следует прямо сказать об этом, отказаться от ранее выставленного тезиса и сформулировать новый тезис и после этого продолжить доказательство уже нового тезиса. ПОДТВЕРЖДЕНИЕ — соответствие теории, закона, гипотезы некоторому факту или экспериментальному результату. В методологии научного познания П. рассматривается как один из критериев истинности теории или закона. Для того чтобы установить, соответствует ли теория действительности, т. е. верна ли она, из нее дедуцируют предложение, говорящее о наблюдаемых или экспериментально обнаруживаемых явлениях. Затем проводят наблюдения или ставят эксперимент, устанавливая истинность или ложность данного предложения. Если оно истинно, то это считается П. теории. Напр., обнаружение химических элементов, предсказанных Д. И. Менделеевым на основе его таблицы, было П. этой таблицы; обнаружение планеты Уран в месте, вычисленном согласно уравнениям небесной механики Ньютона, было П. механики и т. п. С логической точки зрения процедура П. описывается следующим образом. Пусть Т — проверяемая тео рия, А — эмпирическое следствие этой теории, связь между Т и А может быть выражена условным суждением «Если Т, то Л». В процессе проверки обнаруживается, что А истинно; делается вывод о том, что Т подтверждена. Схема рассуждения выглядит следующим образом: Если 7\ то А А I Такой вывод не дает достоверного заключения, поэтому на основании истинности А мы не можем заключить, что теория Т также истинна, и говорим лишь, что теория Т подтверждена. Чем больше проверенных истинных следствий имеет теория, тем в большей степени она считается подтвержденной. Следует иметь в виду, однако, что П. никогда не может быть полным и окончательным, т. е. сколько бы П. ни получила теория, мы не сможем утверждать, что она истинна. Число возможных эмпирических следствий теории бесконечно, мы же можем проверить лишь конечное их число. Поэтому всегда сохраняется возможность того, что однажды предсказание теории окажется ложным. Напр., утверждение «Все лебеди белы» в течение столетий подтверждалось сотнями и тысячами примеров, но однажды людям встретился черный лебедь и обнаружилось, что это утверждение ложно. Это говорит о том, что под- тверждаемость некоторой теории еще не позволяет нам с уверенностью сказать, что теория истинна. Ложная теория может в течение длительного времени находить П. ПОЗНАНИЕ — высшая форма отражения объективной действительности, процесс выработки истинных знаний. Первоначально П. представляло собой одну из сторон практической деятельности людей, постепенно в ходе исторического развития человечества П. стало особой деятельностью. В П. выделяют два уровня: чувственное П., осуществляемое с помощью ощущения, восприятия, представления, и рациональное П., протекающее в понятиях, суждениях, умозаключениях и фиксируемое в теориях. Различают также обыденное, художественное и научное П., а в рамках последнего — П. природы и П. общества. Различные стороны процесса П. исследуются рядом специальных наук: когнитивной психологией, историей науки, социологией науки и т. п. Общее учение о П. дает философская теория П. ПОЛЕМИКА — разновидность спора, отличающаяся тем, что основные усилия спорящих сторон направлены на утверждение своей точки зрения по обсуждаемому вопросу. Наряду с дискуссией, П. является одной из наиболее распространенных форм спора. С дискуссией ее сближают наличие достаточно определенного тезиса, выступающего предметом разногласий, известная содержательная связность, предполагающая внимание к аргументам противной стороны, очередность выступлений спорящих, некоторая ограниченность приемов, с помощью которых опровергается противная сторона и обосновывается собственная точка зрения. Вместе с тем П. существенно отличается от дискуссии. Если целью дискуссии являются прежде всего поиски общего согласия, того, что объединяет разные точки зрения, то основная задача П.— утверждение одной из противостоящих позиций. Полемизирующие стороны менее, чем в дискуссии, ограничены в выборе средств спора, его стратегии и тактики. В П., как и в споре вообще, недопустимы некорректные приемы (подмена тезиса, аргумент к силе или к невежеству, использование ложных и недоказанных аргументов и т. п.). В П. может применяться гораздо более широкий, чем в дискуссии, спектр корректных приемов. Большое значение имеют, в частности, инициатива, навязывание своего сценария обсуждения темы, внезапность в использовании доводов, выбор наиболее удачного времени для изложения решающих аргументов и т. п. Хотя П. и направлена по преимуществу на утверждение своей позиции, нужно постоянно помнить, что главным в споре является достижение истины. Победа ошибочной точки зрения, добытая благодаря уловкам и слабости другой стороны, как правило, недолговечна, и она не способна принести моральное удовлетворение. ПОЛНОТА (в логике и дедуктивных науках) — логи ко-методологическое требование, предъявляемое к аксиоматической теории и характеризующее достаточность для определенных целей ее выразительных и дедуктивных средств. Аксиоматическая система является полной, если все ее формулы, истинные при рассматриваемой интерпретации, доказуемы. Полная система содержит все возможные теоремы, не противоречащие интерпретации. Для уточнения семантического понимания П. может быть выдвинуто требование, чтобы либо само предложение, либо его отрицание было теоремой, т. е. чтобы предложение бьпчо или доказуемо, или опровержимо. В 1931 г. К. Гёдель показал, что достаточно богатые аксиоматические системы (включающие арифметику натуральных чисел) в принципе не могут быть полными: в них имеются предложения, которые не могут быть ни доказаны, ни опровергнуты. Требование П. не является необходимым; неполные аксиоматические системы могут представлять и теоретический, и практический интерес. ПОНИМАНИЕ — универсальная операция мышления, связанная с усвоением нового содержания, включением его в систему устоявшихся идей и представлений. П. наделяет смыслом объекты социально-культурной и природной реальности и вводит их тем самым в привычный и связный мир человека. Оно всегда обусловлено социально-историческими и культурными предпосылками. Уяснение смысла объекта как целого предполагает П. его частей; в свою очередь, уяснение смысла частей требует П. смысла целого (т. наз. «герменевтический круг»). Теория и искусство истолкования, и прежде всего истолкования текста, именуется герменевтикой (греч. /гегпгепеио—разъясняю). Как особая отрасль знания она начала складываться еще в поздней античности. В средние века некоторые проблемы герменевтики разрабатывались в рамках толкования священного писания (экзегетики). П. является той точкой, в которой пересекаются все проблемы такого сложного и многоаспектного явления, как человеческая коммуникация. Обыденность П., иллюзия легкой, почти автоматической его достижимости долгое время затемняли его сложность и комплексный характер. Хотя эта проблема начала активно обсуждаться еще в XIX в., в полном объеме и во всей своей сложности она встала только в последние десятилетия. Наряду с объяснением П. является одной из основных функций научного познания. Логическая структура П. пока не особенно ясна, нередко предполагается, что оно вообще лишено отчетливой структуры. Весьма распространенной является восходящая к старой герменевтике идея, что истолковываться и пониматься может только текст, наделенный определенным смыслом: понять означает раскрыть смысл, вложенный в текст его автором. Узкая трактовка П., будучи приложенной к познанию природы, ведет к неясным рассуждениям о «книге бытия», которая должна «читаться» и «пониматься» подобно другим текстам. Поскольку у этой «книги» нет ни автора, ни зашифрованного смысла, естественнонаучное П. оказывается П. лишь в некотором переносном, метафорическом значении. Иногда П. истолковывается как неожиданное прозрение, внезапное ясное вйдение какого-то до тех пор бывшего довольно туманным и несвязным целого. Такое сведение П. к «озарению», «инсайту», или «прозрению», делает операцию П. редкостью не только в естественных, но и в гуманитарных науках. Определенный интерес представляет концепция, утверждающая, что П. есть оценка на основе некоторого образца, стандарта, нормы или принципа. Пониматься может все, для чего существует такой общий образец, начиная с явлений неживой природы и кончая поступками, индивидуальными психическими состояниями и текстами. Результатом П. является оценка понимаемого объекта с определенной устоявшейся точки зрения. Истолкование, делающее возможным П., представляет собой поиск стандарта оценки и обоснование его приложимости к рассматриваемому конкретному случаю. Напр., понять действие истори- Понятие
ческого лица значит вывести обязательность этого действия из тех целей и ценностей, которых оно придерживалось («В ситуации типа С следовало сделать х\ деятель А находился в ситуации типа С; значит, деятель А должен был сделать х»). Поведение становится понятным, как только удается убедительно подвести его под некоторый общий принцип или образец; понятное в действиях человека — это отвечающее принятому правилу, а потому правильное и в определенном смысле ожидаемое. П. природы также является оценкой ее явлений с точки зрения того, что должно в ней происходить, т. е. с позиции устоявшихся и опирающихся на прошлый опыт познания представлений о «нормальном» или «естественном» ходе вещей. ПОНЯТИЕ — мысль, фиксирующая признаки отображаемых в ней предметов и явлений, позволяющие отличать эти предметы и явления от смежных с ними. Существенную роль в формировании П. играют процессы обобщения, спецификации и абстракции. Признаки, фиксируемые в П., представляют собой свойства изучаемых предметов и явлений и отношения между ними. Признаки, которые служат выделению, спецификации, носят название отличительных (специфических). Спецификации могут производиться по отношению и к отдельным, и к нескольким предметам. При этом возникают П. о классах предметов, в которых предметы мыслятся лишь под углом зрения признаков, отражаемых в П.; о таких предметах говорят уже как об элементах класса. В П. отображаются не только отличительные признаки предмета, но и такие общие признаки, которые принадлежат всем элементам образованных классов. Так, в П. о квадрате отображаются не только такие отличительные признаки, как «быть равносторонним прямоугольником», но и общие признаки — «быть параллелограммом», «быть плоской геометрической фигурой» и т. п. (они принадлежат и каждому квадрату, и другим геометрическим фигурам). В научных П. отображаются и обобщаются отличительные признаки, являющиеся существенными: для человека как общественного существа таковым является, напр., способность производить орудйя труда, .а не свойство «иметь мягкую мочку уха». В рамках каждой из математических теорий, оперирующих абстрактными объектами, все отличительные признаки являются существенными, необходимыми. При помощи П. мы отображаем не только фрагменты действительности, рассматриваемые в отвлечении от изменения и развития, но и сам процесс постоянного изменения и развития изучаемой действительности, процесс углубления наших знаний о ней. Формальная логика изучает общую структуру П., его видов, структуру определения П. Диалектическая логика изучает процессы формирования и развития П. в связи с переходом знания от менее глубокой сущности к сущности более глубокой, рассматривает их как ступени познания, как итог познавательной деятельности. П. непосредственно закрепляются и выражаются в языковой форме: в виде отдельных слов («революция», «атом», «кислород») или в виде словосочетаний («затухающие колебания», «социалистические страны»), обозначающих классы объектов. В каждом П. различают содержание и объем. Содержание П.— это совокупность отраженных в нем признаков предметов. Так, в содержание П. «молекула» в числе иных свойств входит свойство «быть . мельчайшей частицей вещества, сохраняющей физические и химические свойства данного вещества». Этим свойством обладает каждая молекула. Объем П.— это множество (класс) предметов (элементов), каждому из которых принадлежат признаки, относящиеся к содержанию П. Так, в объем П. «река» войдет множество, состоящее из отдельных рек, называемых «Волга», «Дон», «Днепр», «Обь» и т. д. Отображаемые в П. предметы всегда выделяются из состава более обширного класса (рода), задаваемого родовым признаком. Признаки, выделяющие изучаемый класс предметов (вид) в пределах этого более обширного родового класса, носят название видовых. Так, класс прямоугольных треугольников является видом по отношению к классу треугольников (род). В логике различают П. с нулевым объемом — их объемы не содержат ни одного элемента («кентавр», «золотая гора»); единичные П.—их объемы содержат лишь по одному элементу («столица Франции», «самая большая река в Европе»); общие П.— в их объемах содержится более чем один элемент («химический элемент», «натуральные числа», «растение», «общественно-экономическая формация»). По характеру элементов объема П. делят на собирательные и несобирательные. К собирательным относятся единичные П., объем которых состоит из различных предметов, составляющих единый агрегат (созвездие «Большая Медведица», «коллектив нашего учреждения»). Содержание П. «быть Большой Медведицей» относится к агрегату в целом, а не к каждой звезде, составляющей данный агрегат. В формальной логике по отношению к содержанию и объему П. формулируется закон их обратного отношения: чем больше содержание П., тем меньше его объем, и наоборот. Так, если к содержанию П. «треугольник» добавить новый признак «иметь равные стороны» (содержание исходного П. увеличилось, т. к. возросло число его признаков), то его объем уменьшится: получившееся П. «равносторонний треугольник» меньше по объему, чем исходное П. «треугольник»: оно составляет лишь часть последнего. Структуру П., в которой отражены свойства предметов, выражают иногда в виде формулы хРх: «все те предметы х, которые обладают свойством Р». Свойство Р может быть сложным свойством. Так, структуру П. «треугольник» можно записать: «х треугольник (*)». Если переменная х пробегает по плоским геометрическим фигурам, то выражение «х треугольник (*)» можно прочитать: «все те плоские геометрические фигуры, которые являются треугольником». ПОРОЧНЫЙ КРУГ — логическая ошибка в определении понятий и в доказательстве, суть которой заключается в том, что некоторое понятие определяется с помощью другого понятия, которое, в свою очередь, определяется через первое, или некоторый тезис доказывается с помощью аргумента, истинность которого обосновывается с помощью доказываемого тезиса. Пример П.к. в определении: «Вращение есть движение вокруг собственной оси». Понятие «ось» само определяется через понятие «вращение» («ось — прямая, вокруг которой происходит вращение»). Частным случаем П.к. в определении понятий могут быть тавтологии, напр., «Демократ есть человек демократических убеждений». Примером П.к. в доказательстве могут служить многочисленные попытки математиков (до открытия Лобачевского) доказать независимость пятого постулата от других постулатов геометрии Евклида, использовавших при этом в качестве аргументов положения, эквивалентные доказываемому пятому постулату. «ПОСЛЕ ЭТОГО ЗНАЧИТ ПО ПРИЧИНЕ ЭТОГО» (лат. ро$1 Нос ег§о ргор1ег Нос) — логическая ошибка, заключающаяся в том, что простую последовательность событий во времени принимают за их причинную связь. Напр., когда после появления кометы возникали какие-то несчастья, часто комету считали причиной несчастья; когда в трубке возникала пустота и вода в ней поднималась, то думали, что пустота есть причина поднятия воды, и т. д. Данная ошибка лежит в основе многочисленных суеверий, легко возникающих в результате соединения во времени двух событий, никак не связанных друг с другом. ПОСПЕШНОЕ ОБОБЩЕНИЕ —ло гическая ошибка в индуктивном выводе. Суть ее заключается в том, что, рассмотрев несколько частных случаев из какого- либо класса явлений, делают вывод обо всем классе. Напр.: 1 — простое число, 2 — простое число, 3 — простое число; следовательно, все натуральные числа — простые. Ошибка П.о. особенно часто совершается в повседневной жизни, когда люди по одному-двум случаям судят о целом классе. ПРАВИЛО ВЫВОДА — правило, определяющее переход от посылок к следствиям. П.в. указывает, какилЯ образом высказывания, истинность которых известна, могут быть видоизменены, чтобы получить новые истинные высказывания. Напр., правило отделения устанавливает, что если истинны два высказывания, одно из которых имеет форму импликации, а другое является основанием (антецедентом) этой импликации, то и Правило Локка
высказывание, являющееся следствием (консеквентом) импликации, истинно. Это правило, называемое также правилом модус поненс, позволяет «отделить» следствие истинной импликации, при условии, что ее основание истинно. Скажем, от посылок «Если цирконий — металл, он электропроводен» и «Цирконий — металл» можно перейти к заключению «Цирконий электропроводен». ПРАВИЛО ЛОККА — правило, формулируемое так: если некоторое свойство А принадлежит любому, но фиксированному элементу изучаемого множества М (т. е. является параметром), то это свойство принадлежит и всем элементам данного множества. Символически оно записывается так: ухА (х) Над чертой в посылке А (а) указывается принадлежность свойства А любому, но фиксированному элементу а некоторого множества, под чертой, т. е. в заключении, говорится о том, что свойство А принадлежит всем элементам этого множества. П.Л. широко используется в логико-математических системах. Оно часто истолковывается как правило обобщения и обосновывает, напр., почему мы можем доказывать теоремы в геометрии, имеющие общий характер, на индивидуальном чертеже. Так, доказывая теорему о том, что сумма внутренних углов треугольника равна двум прямым, мы пользуемся некоторым треугольником АВС, нарисованным на доске. Этот треугольник, однако, рассматривается нами как любой треугольник, поскольку от длины сторон, величины его углов, от его площади мы отвлекаемся: они не принимаются во внимание нами при доказательстве нашей теоремы. Этот треугольник выступает как параметр а. Доказывая, что ему принадлежит свойство А (а именно, что сумма его внутренних углов равна двум прямым), мы тем самым доказываем принадлежность этого свойства всякому треугольнику.
|